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◼ Jaccard benzerliği, uzaklık ölçütü olmamasına rağmen kümelerin ne 
kadar yakın olduğunu gösterir.

◼ (1 - Jaccard benzerliği) bir uzaklık ölçütüdür.

◼ Noktalardan oluşan bir uzayda, x ve y noktası için uzaklık d(x, y) ile 
gösterilir ve aşağıdaki önermeleri sağlamalıdır:

◼ d(x, y) ≥ 0 (negatif olmaz)

◼ d(x, y) = 0 (eğer x = y ise)

◼ d(x, y) = d(y, x) (uzaklık simetriktir)

◼ d(x, y) ≤ d(x, z) + d(z, y) (üçgen eşitsizliği)

Uzaklık Ölçütleri
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◼ Öklit uzaklıkları, en yaygın kullanılan uzaklık ölçütüdür.

◼ N boyutlu öklit uzayında bir nokta reel sayılardan oluşan n elemanlı bir 
vektördür.

◼ Bu uzaydaki L2-norm uzaklık aşağıdaki gibidir:

◼ Öklit uzaklıkları negatif olamaz, 0 ise X = Y ’dir, 
simetriktir (x, y)2=(y, x)2 ve üçgen eşitsizliğini sağlar.

◼ Lr-norm uzaklık aşağıdaki gibidir:

Öklit uzaklıkları
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◼ L1-norm uzaklık Manhattan uzaklığı olarak adlandırılır.

◼ L-norm ise r sonsuza giderken limiti gösterir.

◼ Örnek: x=(2, 7) ve y=(6, 4) noktaları için aşağıdaki uzaklıklar hesaplanır.

Öklit uzaklıkları
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◼ Jaccard uzaklığı, Jaccard benzerliği ile hesaplanır.

◼ Jaccard uzaklığı negatif olamaz. 

Kesişim kümesi, 0’dan küçük olamaz ve birleşim kümesinden büyük olamaz.

◼ d(x, y) = 0 ise, x = y ’dir. (SIM(x, y) = 1).

◼ d(x, y) = d(y, x) ’dir. Kesişim ve birleşim kümeleri simetriktir. 

x  y = y  x ve x  y = y  x dir.

◼ d(x, y) ≤ d(x, z) + d(z, y) sağlanır. Jaccard uzaklığı d(x, y), minhash fonksiyonunun 

x ve y için aynı değeri (bucket) döndürmeme (SIM(x, y) döndürme) olasılığıdır. 

h(x) ≠ h(y) olasılığı, h(x) ≠ h(z) olasılığı ile h(z) ≠ h(y) olasılığının toplamından 

büyük olamaz. 

h(x) ≠ h(y) ise, h(x) ve h(y)’den en az bir tanesi h(z)’den farklı olmak zorundadır.

Jaccard uzaklığı
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◼ Cosine uzaklığı, vektör elemanlarını integer veya boolean değerler 
olarak alır.

◼ N boyutlu uzayda noktalar bir yönü gösterir.

◼ İki nokta arasındaki cosine uzaklığı vektörler arasındaki açıyı 
(0-180 arasında) ifade eder.

◼ Örnek: x=[1, 2, -1] ve y=[2, 1, 1]

Cosine uzaklığı
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◼ Edit uzaklığı, vektörleri string olarak alır.

◼ x = x1x2…xn ile y = y1y2…ym noktaları için edit uzaklığı, x ’in y ’ye
dönüştürülmesi için minimum insert ve delete (tek karakter) işlem 
sayısını gösterir.

◼ Örnek: x=abcde ve y=acfdeg

◼ Delete b

◼ Insert f, c den sonra

◼ Insert g, e den sonra

d(x, y) = 3 ’tür.

Edit uzaklığı



7

13

◼ Edit uzaklığı, LCS (Longest Common Subsequence) ile hesaplanabilir. 

◼ İki string için LCS, en uzun ortak subsequence’dir.

◼ İki string’ten karakter silinerek elde edilir ve karakter sırası iki string’te 
de aynı olmak zorundadır.

d(x, y) = length(x) + length(y) – 2*length(LCS)

◼ Örnek: x=abcde ve y=acfdeg

◼ LCS(x, y) = acde

◼ d(x, y) = length(x) + length(y) – 2*length(LCS) = 5 + 6 – 8 = 3

◼ x=aba ve y=bab

◼ LCS(x, y) = ab veya ba

◼ d(x, y) = 3 + 3 – 4 = 2

Edit uzaklığı
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◼ Hamming uzaklığı, iki vektör için aynı konumdaki farklı eleman 
sayısıdır.

◼ Hamming uzaklığı genellikle iki vektör boolean değerlere sahipse 
kullanılır.

◼ Örnek: x=10101 ve y=11110

d(x, y) = 3

Hamming uzaklığı
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◼ LS fonksiyonları (örn. minhash fonksiyonları), uzaklık değeri küçük olan 
çiftleri kuvvetli aday çift olarak belirleyebilmektedir.

◼ S-eğrisindeki diklik arttıkça, false positive ve false negative çiftlerin sayısı 
azalır.

Locality-Sensitive Fonksiyonların Teorisi
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◼ LS fonksiyonları, Jaccard uzaklığı, Hamming uzaklığı veya diğer 
uzaklıklara uygulanabilir.

◼ LS fonksiyon kümeleri aşağıdaki şartları sağlamalıdır:

◼ Birbirine yakın çiftleri uzak çiftlere göre daha çok aday çift olarak 
belirleyebilmelidirler.

◼ Fonksiyonlar birbirinden bağımsız olmalıdır ve bağımsız olaylar için cevap 
olasılıkları tahmin edilebilmelidir.

◼ Aday çiftleri, tüm çiftlere (tüm verilerine) bakma süresine göre çok daha kısa 
sürede belirleyebilmelidirler.

◼ Birbirleriyle birleştirilebilir olmalıdırlar. Böylelikle daha düşük false positive ve 
false negative elde edilebilir.

Locality-sensitive fonksiyon kümesi
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◼ LS fonksiyonları iki çifti (dokümanı) giriş olarak alır ve aday çift olup 
olmadıklarına karar verir.

◼ LS fonksiyonları, girişlerin hash değerini hesaplar ve sonucun eşit olup 
olmadığına göre bir karar verir.

◼ En kolay yöntemde,  f(x) = f(y) ise x ve y aday çifttir, f(x)  f(y) ise x ve y
aday çift değildir.

◼ Bu şekilde oluşturulan fonksiyonlar LS fonksiyon kümesi olarak 
adlandırılır.

◼ Karakteristik matris için oluşturulan minhash fonksiyonları, LS fonksiyon 
kümesini oluşturur.

Locality-sensitive fonksiyonları
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◼ Bir uzaklık ölçütü d için,  d1 < d2 olmak üzere iki uzaklık olsun.

◼ Eğer bir F fonksiyon kümesindeki tüm f fonksiyonları aşağıdaki şartları 
sağlıyorsa (d1, d2, p1, p2)-sensitive olarak adlandırılır:

◼ Eğer d(x, y) ≤ d1 ise, f(x) = f(y) olma olasılığı en az p1 kadardır.

◼ Eğer d(x, y) ≥ d2 ise, f(x) = f(y) olma olasılığı en çok p2 kadardır.

Locality-sensitive fonksiyonları
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◼ Jaccard uzaklığı için F fonksiyon kümesi, herhangi iki  d1 ve d2 uzaklıkları 
için (d1, d2, 1 - d1, 1 - d2)-sensitive kümesi şeklinde tanımlanır.

◼ Burada, 0 ≤ d1 ≤ d2 ≤ 1 dir.

◼ Eğer Jaccard uzaklığı  d(x, y) ≤ d1 ise, 
1 - SIM(x, y) ≤ d1  SIM(x, y) ≥ 1 - d1 ’dir. 

◼ Eğer Jaccard uzaklığı d(x, y) ≥ d2 ise, 
1 - SIM(x, y) ≥ d2  SIM(x, y) ≤ 1 - d2 ’dir. 

Jaccard uzaklığı için locality-sensitive fonksiyon kümesi
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Örnek: 

◼ d1 = 0.3 ve d2 = 0.6 olsun. 

◼ Minhash fonksiyon kümesi (0.3, 0.6, 0.7, 0.4)-sensitive olarak 
tanımlanabilir.

◼ Jaccard uzaklığı en çok 0.3 olan x ve y için, 
minhash fonksiyonu en az 0.7 (SIM(x, y) ≥ 0.7) olasılıkla aynı değeri 
(aynı bucket’a eşleştirir) üretir. 

◼ Jaccard uzaklığı en az 0.6 olan x ve y için, 
minhash fonksiyonu en çok 0.4 (SIM(x, y) ≤ 0.4) olasılıkla aynı değeri 
(aynı bucket’a eşleştirir) üretir. 

Jaccard uzaklığı için locality-sensitive fonksiyon kümesi
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◼ d-boyutlu x ve y vektörleri için h(x, y) hamming uzaklığını göstersin.

◼ Herhangi bir i.konumda x ve y eşit ise,  fi(x) = fi(y) olsun. 

◼ Rastgele seçilen herhangi bir  i için,  fi(x) = fi(y) olma olasılığı 
1 – (h(x, y)/d) şeklinde ifade edilir.

◼ Hamming uzaklığı için F fonksiyon kümesi, herhangi iki  d1 ve  d2  için
(d1, d2, 1 - d1/d, 1 - d2/d )-sensitive kümesi şeklinde tanımlanır.

◼ Burada, d1 < d2 ’dir.

◼ Jaccard uzaklığı 0-1 arasındadır, Hamming uzaklığı 0-d arasındadır. Bu 
yüzden d  ile bölünerek ölçeklendirilmesi gerekir.

◼ Minhash fonksiyonları için F kümesinde sınırsız fonksiyon olabilir, ancak 
Hamming uzaklığı için d tanedir.

Hamming uzaklığı için locality-sensitive fonksiyon kümesi
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◼ Bir F kümesi (d1, d2, p1, p2)-sensitive olsun.

◼ F kümesinden bir F kümesi AND-construction ile oluşturulabilir.

◼ F kümesindeki her fonksiyon F kümesinden r tane fonksiyon 
kullanılarak (birleştirilerek) oluşturulur (r-way construction).

◼ Her f F fonksiyonu, {f1 , f2 ,…, fr}F kümesinden oluşturulur. 

◼ Sadece ve sadece tüm i = 1, 2,…, r için fi(x) = fi(y) (fiF) olması 
durumunda, f(x) = f(y) (f F) denir.

◼ Elde edilen F kümesi (d1, d2, (p1) 
r, (p2) 

r )-sensitive olur.

Locality-sensitive kümesini iyileştirme
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◼ F kümesinden bir F kümesi OR-construction ile oluşturulabilir.

◼ F kümesi F kümesinden r tane fonksiyon kullanılarak oluşturulur.

◼ Her f F fonksiyonu, {f1 , f2 ,…, fr}F kümesinden oluşturulur. 

◼ Sadece ve sadece bir veya daha fazla i = 1, 2,…, r için fi(x) = fi(y) (fiF) 

olması durumunda, f(x) = f(y) (f F) denir.

◼ Elde edilen F kümesi (d1, d2, 1- (1-p1) 
r, 1- (1-p2) 

r )-sensitive olur.

◼ F kümesindeki bir fonksiyonun x ve y’yi aday çift yapma olasılığı p ise, 
aday yapmama olasılığı 1 - p ’dir. 

◼ r tane fonksiyonun aday yapmama olasılığı (1 - p)r  ’dir. 

◼ En az bir tane  fi fonksiyonunun aday çift yapma olasılığı 1 - (1 - p)r 

şeklinde hesaplanır.

Locality-sensitive kümesini iyileştirme
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Örnek - 1

◼ F1 kümesi F kümesinden 4-way AND-construction ile üretilsin. F2

kümesi de F1 kümesinden 4-way OR-construction ile üretilsin.

◼ 4-way AND fonksiyonları, p olasılıklarını p4 yapar.

◼ Ardından uygulanan 4-way OR fonksiyonları, p4 olasılıklarını 1 - (1 - p4)4

yapar ve tablodaki yeni olasılık değerleri bulunur.

◼ F minhash fonksiyonları olsun. F kümesi
(0.2, 0.6, 0.8, 0.4)-sensitive ise, F2 kümesi 
(0.2, 0.6, 0.8785, 0.0985)-sensitive olur.

◼ F kümesi yerine F2 kümesi kullanıldığında 
FN (0.8785) sayısı azalmıştır,
FP (0.0985) sayısı azalmıştır.

Locality-sensitive kümesini iyileştirme

32

Örnek - 2

◼ F kümesine önce 4-way OR-construction, ardından 4-way AND-

construction yapılsın.

◼ 4-way OR fonksiyonları, p olasılıklarını 1 - (1 - p)4 yapar.

◼ Ardından uygulanan 4-way AND fonksiyonları, 1 - (1 - p)4 olasılıklarını 
(1 - (1 - p) 4)4 yapar ve tablodaki yeni olasılık değerleri bulunur.

◼ F kümesi (0.2, 0.6, 0.8, 0.4)-sensitive ise, 
F2 kümesi (0.2, 0.6, 0.9936, 0.5740)-sensitive olur.

◼ Yüksek olasılık 1’e yaklaşmıştır. Düşük olasılık 
yükselmiştir. 

◼ F kümesi yerine F2 kümesi kullanıldığında 
FN (0.9936) sayısı azalmıştır, 
FP (0.5740) sayısı artmıştır.

Locality-sensitive kümesini iyileştirme
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◼ Parmak izi eşleştirmede anormal değişimlere (yüksekliklerin sonlanması, 
birleşmesi, ayrılması, …) bakılır.

◼ Parmak izindeki değişimler bulunduğu konuma bağlı olarak bir grid ile 
gösterilebilir.

◼ Parmak izlerini gösteren kümedeki gridlerden oluşan elemanlar Jaccard 
uzaklığı veya Jaccard benzerliği ile karşılaştırılabilir.

◼ Parmak izi karşılaştırmada iki amaç olabilir:

◼ Bir parmak izi ile (örn. silah üzerinde bulunan) veritabanındaki tüm parmak izleri 
kaşılaştırılabilir (many-one problemi).

◼ Tüm veritabanındaki parmak izleri içinde birbirine benzeyenler bulunabilir 
(many-many problemi).

Locality-Sensitive Hashing - Uygulama
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◼ Rastgele seçilen herhangi bir parmak izine ait grid içerisinde rastgele 
seçilen bir hücrede anormal değişim bulma olasılığı %20 olsun.

◼ Aynı parmağa ait iki parmak izinden birisinde değişim olan bir hücre 
için diğerine ait gridin aynı hücresinde de anormal değişim olma 
olasılığı %80 olsun.

◼ Locality-sensitive fonksiyonlar kümesi F ’deki her bir  f fonksiyonu, üç 
grid hücresi belirlenerek tanımlanabilir.

◼ f  fonksiyonu her iki parmak izinde de 3 grid hücresinde anormal 
değişim varsa "EVET" üretir, aksi durumda "HAYIR" üretir.

Locality-Sensitive Hashing - Uygulama

36

◼ Many-one probleminin çözümü için F ‘deki fonksiyonlar kullanılarak 
veritabanındaki parmak izlerinin ait olduğu bucket’lar hesaplanır.

◼ Girilen yeni parmak izinin ait olduğu bucket hesaplanır ve bu
bucket’taki tüm parmak izleriyle karşılaştırılır.

◼ Many-many problemi için tüm bucket’lardaki parmak izleri kendi 
aralarında ikili olarak karşılaştırılır.

Locality-Sensitive Hashing - Uygulama



19

37

◼ F içerisindeki bir f fonksiyonu ile farklı parmaklara ait iki parmak izinin 
aynı bucket’a atanma olasılığı (0,2)6 = 0,000064 ’tür (6 bağımsız olay).

◼ Aynı parmağa ait birinci parmak izinde 3 hücrenin de anormal değişime 
sahip olma olasılığı (0,2)3, bu gerçekleşirse ikinci parmak izindeki üç 
hücrenin anormal değişime sahip olma olasılığı (0,8)3 olur.

◼ F içerisindeki bir f  fonksiyonu ile aynı parmağa ait iki parmak izinin 
aynı bucket’a atanma olasılığı (0,2)3.(0,8)3 = 0,008 . 0,512 = 0,004096.

◼ Aynı parmağa ait iki parmak izinin aynı bucket’a gelme olasılığı yaklaşık 
%0,41 (TP) olur.

◼ Farklı parmaklara ait iki parmak izinin aynı bucket’a gelme olasılığı 
yaklaşık %0,0064 (FP) olur.

Locality-Sensitive Hashing - Uygulama

38

◼ F kümesinden 1024-way OR-construction yapılsın. 

◼ OR-construction ile herhangi bir f fonksiyonu için aday yapılanlar (en az 
bir aynı bucket) aday çift kabul edilir.

◼ OR-construction yapıldığında, (d1, d2, p1, p2)-sensitive kümesi,
(d1, d2, 1 - (1 - p1)

1024, 1 - (1 - p2)
1024)-sensitive kümesine dönüşür.

◼ Aynı parmağa ait iki parmak izinin en az bir (OR) aynı bucket’ta yer 
alma olasılığı 1 - (1 - 0,004096)1024 = 0,985 (%98,5) olur.
(FN %1,5 – tanıma hatası, kontrol edilmesi gereken ancak kontrol 
edilmeyen).  

◼ İki farklı parmağa ait iki parmak izinin aynı bucket’ta yer alma olasılığı 
1 - (1 - 0,000064)1024 = 0,063 (%6,3) olur. 
(FP %6,3 – veritabanında gereksiz bakılan oran).

Locality-Sensitive Hashing - Uygulama
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◼ Büyük veri içerisinde benzer görüntülerin (yüz, manzara, çizim, …) 
bulunması için kullanılan yöntemlere yönelik bir araştırma ödevi 
hazırlayınız. 

Ödev


