
1

Büyük Veri Analitiği
(Big Data Analytics)

M. Ali Akcayol

Gazi Üniversitesi

Bilgisayar Mühendisliği Bölümü

Bu dersin sunumları, “Mining of Massive Datasets, Jure Leskovec, Anand Rajaraman, Jeffrey David Ullman,

Stanford University, 2011.” kitabı kullanılarak hazırlanmıştır.

2

Konular

▪ Uzaklık Ölçütleri
▪ Öklit uzaklıkları

▪ Jaccard uzaklığı

▪ Cosine uzaklığı

▪ Edit uzaklığı

▪ Hamming uzaklığı

◼ Locality-Sensitive Fonksiyonların Teorisi
▪ Locality-sensitive fonksiyon kümesi

▪ Locality-sensitive fonksiyonları

▪ Jaccard uzaklığı için locality-sensitive fonksiyon kümesi

▪ Hamming uzaklığı için locality-sensitive fonksiyon kümesi

▪ Locality-sensitive kümesini iyileştirme

◼ Locality-Sensitive Hashing - Uygulama

2

3

◼ Jaccard benzerliği, uzaklık ölçütü olmamasına rağmen kümelerin ne
kadar yakın olduğunu gösterir.

◼ (1 - Jaccard benzerliği) bir uzaklık ölçütüdür.

◼ Noktalardan oluşan bir uzayda, x ve y noktası için uzaklık d(x, y) ile
gösterilir ve aşağıdaki önermeleri sağlamalıdır:

◼ d(x, y) ≥ 0 (negatif olmaz)

◼ d(x, y) = 0 (eğer x = y ise)

◼ d(x, y) = d(y, x) (uzaklık simetriktir)

◼ d(x, y) ≤ d(x, z) + d(z, y) (üçgen eşitsizliği)

Uzaklık Ölçütleri

4

Konular

▪ Uzaklık Ölçütleri
▪ Öklit uzaklıkları

▪ Jaccard uzaklığı

▪ Cosine uzaklığı

▪ Edit uzaklığı

▪ Hamming uzaklığı

◼ Locality-Sensitive Fonksiyonların Teorisi
▪ Locality-sensitive fonksiyon kümesi

▪ Locality-sensitive fonksiyonları

▪ Jaccard uzaklığı için locality-sensitive fonksiyon kümesi

▪ Hamming uzaklığı için locality-sensitive fonksiyon kümesi

▪ Locality-sensitive kümesini iyileştirme

◼ Locality-Sensitive Hashing - Uygulama

3

5

◼ Öklit uzaklıkları, en yaygın kullanılan uzaklık ölçütüdür.

◼ N boyutlu öklit uzayında bir nokta reel sayılardan oluşan n elemanlı bir
vektördür.

◼ Bu uzaydaki L2-norm uzaklık aşağıdaki gibidir:

◼ Öklit uzaklıkları negatif olamaz, 0 ise X = Y ’dir,
simetriktir (x, y)2=(y, x)2 ve üçgen eşitsizliğini sağlar.

◼ Lr-norm uzaklık aşağıdaki gibidir:

Öklit uzaklıkları

6

◼ L1-norm uzaklık Manhattan uzaklığı olarak adlandırılır.

◼ L-norm ise r sonsuza giderken limiti gösterir.

◼ Örnek: x=(2, 7) ve y=(6, 4) noktaları için aşağıdaki uzaklıklar hesaplanır.

Öklit uzaklıkları









−= 

=

n

i

iinn yxyyyxxxd
1

2121]),...,[],,...,([

)(maxlim]),...,[],,...,([
1

/1

1

2121 ii

n

i

r
n

i

r

ii
r

nn yxyxyyyxxxd −=







−=

=
=

→


5)47()62(22

2 =−+−=− normL

747621 =−+−=− normL

() 44762max =−+−=− normL

4

7

Konular

▪ Uzaklık Ölçütleri
▪ Öklit uzaklıkları

▪ Jaccard uzaklığı

▪ Cosine uzaklığı

▪ Edit uzaklığı

▪ Hamming uzaklığı

◼ Locality-Sensitive Fonksiyonların Teorisi
▪ Locality-sensitive fonksiyon kümesi

▪ Locality-sensitive fonksiyonları

▪ Jaccard uzaklığı için locality-sensitive fonksiyon kümesi

▪ Hamming uzaklığı için locality-sensitive fonksiyon kümesi

▪ Locality-sensitive kümesini iyileştirme

◼ Locality-Sensitive Hashing - Uygulama

8

◼ Jaccard uzaklığı, Jaccard benzerliği ile hesaplanır.

◼ Jaccard uzaklığı negatif olamaz.

Kesişim kümesi, 0’dan küçük olamaz ve birleşim kümesinden büyük olamaz.

◼ d(x, y) = 0 ise, x = y ’dir. (SIM(x, y) = 1).

◼ d(x, y) = d(y, x) ’dir. Kesişim ve birleşim kümeleri simetriktir.

x  y = y  x ve x  y = y  x dir.

◼ d(x, y) ≤ d(x, z) + d(z, y) sağlanır. Jaccard uzaklığı d(x, y), minhash fonksiyonunun

x ve y için aynı değeri (bucket) döndürmeme (SIM(x, y) döndürme) olasılığıdır.

h(x) ≠ h(y) olasılığı, h(x) ≠ h(z) olasılığı ile h(z) ≠ h(y) olasılığının toplamından

büyük olamaz.

h(x) ≠ h(y) ise, h(x) ve h(y)’den en az bir tanesi h(z)’den farklı olmak zorundadır.

Jaccard uzaklığı

),(SIM1),(yxyxd −=

5

9

Konular

▪ Uzaklık Ölçütleri
▪ Öklit uzaklıkları

▪ Jaccard uzaklığı

▪ Cosine uzaklığı

▪ Edit uzaklığı

▪ Hamming uzaklığı

◼ Locality-Sensitive Fonksiyonların Teorisi
▪ Locality-sensitive fonksiyon kümesi

▪ Locality-sensitive fonksiyonları

▪ Jaccard uzaklığı için locality-sensitive fonksiyon kümesi

▪ Hamming uzaklığı için locality-sensitive fonksiyon kümesi

▪ Locality-sensitive kümesini iyileştirme

◼ Locality-Sensitive Hashing - Uygulama

10

◼ Cosine uzaklığı, vektör elemanlarını integer veya boolean değerler
olarak alır.

◼ N boyutlu uzayda noktalar bir yönü gösterir.

◼ İki nokta arasındaki cosine uzaklığı vektörler arasındaki açıyı
(0-180 arasında) ifade eder.

◼ Örnek: x=[1, 2, -1] ve y=[2, 1, 1]

Cosine uzaklığı





==

===
n

i

i

n

i

i

n

i

ii

nn

yx

yx

YX

YX
yyyxxx

1

2

1

2

1
2121

.
.

]),...,[],,...,cos([

5,0)60cos(

5,0
66

3

112)1(21

1).1(1.22.1
),cos(

222222

=

==
++−++

−++
=yx

6

11

Konular

▪ Uzaklık Ölçütleri
▪ Öklit uzaklıkları

▪ Jaccard uzaklığı

▪ Cosine uzaklığı

▪ Edit uzaklığı

▪ Hamming uzaklığı

◼ Locality-Sensitive Fonksiyonların Teorisi
▪ Locality-sensitive fonksiyon kümesi

▪ Locality-sensitive fonksiyonları

▪ Jaccard uzaklığı için locality-sensitive fonksiyon kümesi

▪ Hamming uzaklığı için locality-sensitive fonksiyon kümesi

▪ Locality-sensitive kümesini iyileştirme

◼ Locality-Sensitive Hashing - Uygulama

12

◼ Edit uzaklığı, vektörleri string olarak alır.

◼ x = x1x2…xn ile y = y1y2…ym noktaları için edit uzaklığı, x ’in y ’ye
dönüştürülmesi için minimum insert ve delete (tek karakter) işlem
sayısını gösterir.

◼ Örnek: x=abcde ve y=acfdeg

◼ Delete b

◼ Insert f, c den sonra

◼ Insert g, e den sonra

d(x, y) = 3 ’tür.

Edit uzaklığı

7

13

◼ Edit uzaklığı, LCS (Longest Common Subsequence) ile hesaplanabilir.

◼ İki string için LCS, en uzun ortak subsequence’dir.

◼ İki string’ten karakter silinerek elde edilir ve karakter sırası iki string’te
de aynı olmak zorundadır.

d(x, y) = length(x) + length(y) – 2*length(LCS)

◼ Örnek: x=abcde ve y=acfdeg

◼ LCS(x, y) = acde

◼ d(x, y) = length(x) + length(y) – 2*length(LCS) = 5 + 6 – 8 = 3

◼ x=aba ve y=bab

◼ LCS(x, y) = ab veya ba

◼ d(x, y) = 3 + 3 – 4 = 2

Edit uzaklığı

14

Konular

▪ Uzaklık Ölçütleri
▪ Öklit uzaklıkları

▪ Jaccard uzaklığı

▪ Cosine uzaklığı

▪ Edit uzaklığı

▪ Hamming uzaklığı

◼ Locality-Sensitive Fonksiyonların Teorisi
▪ Locality-sensitive fonksiyon kümesi

▪ Locality-sensitive fonksiyonları

▪ Jaccard uzaklığı için locality-sensitive fonksiyon kümesi

▪ Hamming uzaklığı için locality-sensitive fonksiyon kümesi

▪ Locality-sensitive kümesini iyileştirme

◼ Locality-Sensitive Hashing - Uygulama

8

15

◼ Hamming uzaklığı, iki vektör için aynı konumdaki farklı eleman
sayısıdır.

◼ Hamming uzaklığı genellikle iki vektör boolean değerlere sahipse
kullanılır.

◼ Örnek: x=10101 ve y=11110

d(x, y) = 3

Hamming uzaklığı

16

Konular

▪ Uzaklık Ölçütleri
▪ Öklit uzaklıkları

▪ Jaccard uzaklığı

▪ Cosine uzaklığı

▪ Edit uzaklığı

▪ Hamming uzaklığı

◼ Locality-Sensitive Fonksiyonların Teorisi
▪ Locality-sensitive fonksiyon kümesi

▪ Locality-sensitive fonksiyonları

▪ Jaccard uzaklığı için locality-sensitive fonksiyon kümesi

▪ Hamming uzaklığı için locality-sensitive fonksiyon kümesi

▪ Locality-sensitive kümesini iyileştirme

◼ Locality-Sensitive Hashing - Uygulama

9

17

◼ LS fonksiyonları (örn. minhash fonksiyonları), uzaklık değeri küçük olan
çiftleri kuvvetli aday çift olarak belirleyebilmektedir.

◼ S-eğrisindeki diklik arttıkça, false positive ve false negative çiftlerin sayısı
azalır.

Locality-Sensitive Fonksiyonların Teorisi

18

Konular

▪ Uzaklık Ölçütleri
▪ Öklit uzaklıkları

▪ Jaccard uzaklığı

▪ Cosine uzaklığı

▪ Edit uzaklığı

▪ Hamming uzaklığı

◼ Locality-Sensitive Fonksiyonların Teorisi
▪ Locality-sensitive fonksiyon kümesi

▪ Locality-sensitive fonksiyonları

▪ Jaccard uzaklığı için locality-sensitive fonksiyon kümesi

▪ Hamming uzaklığı için locality-sensitive fonksiyon kümesi

▪ Locality-sensitive kümesini iyileştirme

◼ Locality-Sensitive Hashing - Uygulama

10

19

◼ LS fonksiyonları, Jaccard uzaklığı, Hamming uzaklığı veya diğer
uzaklıklara uygulanabilir.

◼ LS fonksiyon kümeleri aşağıdaki şartları sağlamalıdır:

◼ Birbirine yakın çiftleri uzak çiftlere göre daha çok aday çift olarak
belirleyebilmelidirler.

◼ Fonksiyonlar birbirinden bağımsız olmalıdır ve bağımsız olaylar için cevap
olasılıkları tahmin edilebilmelidir.

◼ Aday çiftleri, tüm çiftlere (tüm verilerine) bakma süresine göre çok daha kısa
sürede belirleyebilmelidirler.

◼ Birbirleriyle birleştirilebilir olmalıdırlar. Böylelikle daha düşük false positive ve
false negative elde edilebilir.

Locality-sensitive fonksiyon kümesi

20

Konular

▪ Uzaklık Ölçütleri
▪ Öklit uzaklıkları

▪ Jaccard uzaklığı

▪ Cosine uzaklığı

▪ Edit uzaklığı

▪ Hamming uzaklığı

◼ Locality-Sensitive Fonksiyonların Teorisi
▪ Locality-sensitive fonksiyon kümesi

▪ Locality-sensitive fonksiyonları

▪ Jaccard uzaklığı için locality-sensitive fonksiyon kümesi

▪ Hamming uzaklığı için locality-sensitive fonksiyon kümesi

▪ Locality-sensitive kümesini iyileştirme

◼ Locality-Sensitive Hashing - Uygulama

11

21

◼ LS fonksiyonları iki çifti (dokümanı) giriş olarak alır ve aday çift olup
olmadıklarına karar verir.

◼ LS fonksiyonları, girişlerin hash değerini hesaplar ve sonucun eşit olup
olmadığına göre bir karar verir.

◼ En kolay yöntemde, f(x) = f(y) ise x ve y aday çifttir, f(x)  f(y) ise x ve y
aday çift değildir.

◼ Bu şekilde oluşturulan fonksiyonlar LS fonksiyon kümesi olarak
adlandırılır.

◼ Karakteristik matris için oluşturulan minhash fonksiyonları, LS fonksiyon
kümesini oluşturur.

Locality-sensitive fonksiyonları

22

◼ Bir uzaklık ölçütü d için, d1 < d2 olmak üzere iki uzaklık olsun.

◼ Eğer bir F fonksiyon kümesindeki tüm f fonksiyonları aşağıdaki şartları
sağlıyorsa (d1, d2, p1, p2)-sensitive olarak adlandırılır:

◼ Eğer d(x, y) ≤ d1 ise, f(x) = f(y) olma olasılığı en az p1 kadardır.

◼ Eğer d(x, y) ≥ d2 ise, f(x) = f(y) olma olasılığı en çok p2 kadardır.

Locality-sensitive fonksiyonları

12

23

Konular

▪ Uzaklık Ölçütleri
▪ Öklit uzaklıkları

▪ Jaccard uzaklığı

▪ Cosine uzaklığı

▪ Edit uzaklığı

▪ Hamming uzaklığı

◼ Locality-Sensitive Fonksiyonların Teorisi
▪ Locality-sensitive fonksiyon kümesi

▪ Locality-sensitive fonksiyonları

▪ Jaccard uzaklığı için locality-sensitive fonksiyon kümesi

▪ Hamming uzaklığı için locality-sensitive fonksiyon kümesi

▪ Locality-sensitive kümesini iyileştirme

◼ Locality-Sensitive Hashing - Uygulama

24

◼ Jaccard uzaklığı için F fonksiyon kümesi, herhangi iki d1 ve d2 uzaklıkları
için (d1, d2, 1 - d1, 1 - d2)-sensitive kümesi şeklinde tanımlanır.

◼ Burada, 0 ≤ d1 ≤ d2 ≤ 1 dir.

◼ Eğer Jaccard uzaklığı d(x, y) ≤ d1 ise,
1 - SIM(x, y) ≤ d1  SIM(x, y) ≥ 1 - d1 ’dir.

◼ Eğer Jaccard uzaklığı d(x, y) ≥ d2 ise,
1 - SIM(x, y) ≥ d2  SIM(x, y) ≤ 1 - d2 ’dir.

Jaccard uzaklığı için locality-sensitive fonksiyon kümesi

13

25

Örnek:

◼ d1 = 0.3 ve d2 = 0.6 olsun.

◼ Minhash fonksiyon kümesi (0.3, 0.6, 0.7, 0.4)-sensitive olarak
tanımlanabilir.

◼ Jaccard uzaklığı en çok 0.3 olan x ve y için,
minhash fonksiyonu en az 0.7 (SIM(x, y) ≥ 0.7) olasılıkla aynı değeri
(aynı bucket’a eşleştirir) üretir.

◼ Jaccard uzaklığı en az 0.6 olan x ve y için,
minhash fonksiyonu en çok 0.4 (SIM(x, y) ≤ 0.4) olasılıkla aynı değeri
(aynı bucket’a eşleştirir) üretir.

Jaccard uzaklığı için locality-sensitive fonksiyon kümesi

26

Konular

▪ Uzaklık Ölçütleri
▪ Öklit uzaklıkları

▪ Jaccard uzaklığı

▪ Cosine uzaklığı

▪ Edit uzaklığı

▪ Hamming uzaklığı

◼ Locality-Sensitive Fonksiyonların Teorisi
▪ Locality-sensitive fonksiyon kümesi

▪ Locality-sensitive fonksiyonları

▪ Jaccard uzaklığı için locality-sensitive fonksiyon kümesi

▪ Hamming uzaklığı için locality-sensitive fonksiyon kümesi

▪ Locality-sensitive kümesini iyileştirme

◼ Locality-Sensitive Hashing - Uygulama

14

27

◼ d-boyutlu x ve y vektörleri için h(x, y) hamming uzaklığını göstersin.

◼ Herhangi bir i.konumda x ve y eşit ise, fi(x) = fi(y) olsun.

◼ Rastgele seçilen herhangi bir i için, fi(x) = fi(y) olma olasılığı
1 – (h(x, y)/d) şeklinde ifade edilir.

◼ Hamming uzaklığı için F fonksiyon kümesi, herhangi iki d1 ve d2 için
(d1, d2, 1 - d1/d, 1 - d2/d)-sensitive kümesi şeklinde tanımlanır.

◼ Burada, d1 < d2 ’dir.

◼ Jaccard uzaklığı 0-1 arasındadır, Hamming uzaklığı 0-d arasındadır. Bu
yüzden d ile bölünerek ölçeklendirilmesi gerekir.

◼ Minhash fonksiyonları için F kümesinde sınırsız fonksiyon olabilir, ancak
Hamming uzaklığı için d tanedir.

Hamming uzaklığı için locality-sensitive fonksiyon kümesi

28

Konular

▪ Uzaklık Ölçütleri
▪ Öklit uzaklıkları

▪ Jaccard uzaklığı

▪ Cosine uzaklığı

▪ Edit uzaklığı

▪ Hamming uzaklığı

◼ Locality-Sensitive Fonksiyonların Teorisi
▪ Locality-sensitive fonksiyon kümesi

▪ Locality-sensitive fonksiyonları

▪ Jaccard uzaklığı için locality-sensitive fonksiyon kümesi

▪ Hamming uzaklığı için locality-sensitive fonksiyon kümesi

▪ Locality-sensitive kümesini iyileştirme

◼ Locality-Sensitive Hashing - Uygulama

15

29

◼ Bir F kümesi (d1, d2, p1, p2)-sensitive olsun.

◼ F kümesinden bir F kümesi AND-construction ile oluşturulabilir.

◼ F kümesindeki her fonksiyon F kümesinden r tane fonksiyon
kullanılarak (birleştirilerek) oluşturulur (r-way construction).

◼ Her f F fonksiyonu, {f1 , f2 ,…, fr}F kümesinden oluşturulur.

◼ Sadece ve sadece tüm i = 1, 2,…, r için fi(x) = fi(y) (fiF) olması
durumunda, f(x) = f(y) (f F) denir.

◼ Elde edilen F kümesi (d1, d2, (p1)
r, (p2)

r)-sensitive olur.

Locality-sensitive kümesini iyileştirme

30

◼ F kümesinden bir F kümesi OR-construction ile oluşturulabilir.

◼ F kümesi F kümesinden r tane fonksiyon kullanılarak oluşturulur.

◼ Her f F fonksiyonu, {f1 , f2 ,…, fr}F kümesinden oluşturulur.

◼ Sadece ve sadece bir veya daha fazla i = 1, 2,…, r için fi(x) = fi(y) (fiF)

olması durumunda, f(x) = f(y) (f F) denir.

◼ Elde edilen F kümesi (d1, d2, 1- (1-p1)
r, 1- (1-p2)

r)-sensitive olur.

◼ F kümesindeki bir fonksiyonun x ve y’yi aday çift yapma olasılığı p ise,
aday yapmama olasılığı 1 - p ’dir.

◼ r tane fonksiyonun aday yapmama olasılığı (1 - p)r ’dir.

◼ En az bir tane fi fonksiyonunun aday çift yapma olasılığı 1 - (1 - p)r

şeklinde hesaplanır.

Locality-sensitive kümesini iyileştirme

16

31

Örnek - 1

◼ F1 kümesi F kümesinden 4-way AND-construction ile üretilsin. F2

kümesi de F1 kümesinden 4-way OR-construction ile üretilsin.

◼ 4-way AND fonksiyonları, p olasılıklarını p4 yapar.

◼ Ardından uygulanan 4-way OR fonksiyonları, p4 olasılıklarını 1 - (1 - p4)4

yapar ve tablodaki yeni olasılık değerleri bulunur.

◼ F minhash fonksiyonları olsun. F kümesi
(0.2, 0.6, 0.8, 0.4)-sensitive ise, F2 kümesi
(0.2, 0.6, 0.8785, 0.0985)-sensitive olur.

◼ F kümesi yerine F2 kümesi kullanıldığında
FN (0.8785) sayısı azalmıştır,
FP (0.0985) sayısı azalmıştır.

Locality-sensitive kümesini iyileştirme

32

Örnek - 2

◼ F kümesine önce 4-way OR-construction, ardından 4-way AND-

construction yapılsın.

◼ 4-way OR fonksiyonları, p olasılıklarını 1 - (1 - p)4 yapar.

◼ Ardından uygulanan 4-way AND fonksiyonları, 1 - (1 - p)4 olasılıklarını
(1 - (1 - p) 4)4 yapar ve tablodaki yeni olasılık değerleri bulunur.

◼ F kümesi (0.2, 0.6, 0.8, 0.4)-sensitive ise,
F2 kümesi (0.2, 0.6, 0.9936, 0.5740)-sensitive olur.

◼ Yüksek olasılık 1’e yaklaşmıştır. Düşük olasılık
yükselmiştir.

◼ F kümesi yerine F2 kümesi kullanıldığında
FN (0.9936) sayısı azalmıştır,
FP (0.5740) sayısı artmıştır.

Locality-sensitive kümesini iyileştirme

17

33

Konular

▪ Uzaklık Ölçütleri
▪ Öklit uzaklıkları

▪ Jaccard uzaklığı

▪ Cosine uzaklığı

▪ Edit uzaklığı

▪ Hamming uzaklığı

◼ Locality-Sensitive Fonksiyonların Teorisi
▪ Locality-sensitive fonksiyon kümesi

▪ Locality-sensitive fonksiyonları

▪ Jaccard uzaklığı için locality-sensitive fonksiyon kümesi

▪ Hamming uzaklığı için locality-sensitive fonksiyon kümesi

▪ Locality-sensitive kümesini iyileştirme

◼ Locality-Sensitive Hashing - Uygulama

34

◼ Parmak izi eşleştirmede anormal değişimlere (yüksekliklerin sonlanması,
birleşmesi, ayrılması, …) bakılır.

◼ Parmak izindeki değişimler bulunduğu konuma bağlı olarak bir grid ile
gösterilebilir.

◼ Parmak izlerini gösteren kümedeki gridlerden oluşan elemanlar Jaccard
uzaklığı veya Jaccard benzerliği ile karşılaştırılabilir.

◼ Parmak izi karşılaştırmada iki amaç olabilir:

◼ Bir parmak izi ile (örn. silah üzerinde bulunan) veritabanındaki tüm parmak izleri
kaşılaştırılabilir (many-one problemi).

◼ Tüm veritabanındaki parmak izleri içinde birbirine benzeyenler bulunabilir
(many-many problemi).

Locality-Sensitive Hashing - Uygulama

18

35

◼ Rastgele seçilen herhangi bir parmak izine ait grid içerisinde rastgele
seçilen bir hücrede anormal değişim bulma olasılığı %20 olsun.

◼ Aynı parmağa ait iki parmak izinden birisinde değişim olan bir hücre
için diğerine ait gridin aynı hücresinde de anormal değişim olma
olasılığı %80 olsun.

◼ Locality-sensitive fonksiyonlar kümesi F ’deki her bir f fonksiyonu, üç
grid hücresi belirlenerek tanımlanabilir.

◼ f fonksiyonu her iki parmak izinde de 3 grid hücresinde anormal
değişim varsa "EVET" üretir, aksi durumda "HAYIR" üretir.

Locality-Sensitive Hashing - Uygulama

36

◼ Many-one probleminin çözümü için F ‘deki fonksiyonlar kullanılarak
veritabanındaki parmak izlerinin ait olduğu bucket’lar hesaplanır.

◼ Girilen yeni parmak izinin ait olduğu bucket hesaplanır ve bu
bucket’taki tüm parmak izleriyle karşılaştırılır.

◼ Many-many problemi için tüm bucket’lardaki parmak izleri kendi
aralarında ikili olarak karşılaştırılır.

Locality-Sensitive Hashing - Uygulama

19

37

◼ F içerisindeki bir f fonksiyonu ile farklı parmaklara ait iki parmak izinin
aynı bucket’a atanma olasılığı (0,2)6 = 0,000064 ’tür (6 bağımsız olay).

◼ Aynı parmağa ait birinci parmak izinde 3 hücrenin de anormal değişime
sahip olma olasılığı (0,2)3, bu gerçekleşirse ikinci parmak izindeki üç
hücrenin anormal değişime sahip olma olasılığı (0,8)3 olur.

◼ F içerisindeki bir f fonksiyonu ile aynı parmağa ait iki parmak izinin
aynı bucket’a atanma olasılığı (0,2)3.(0,8)3 = 0,008 . 0,512 = 0,004096.

◼ Aynı parmağa ait iki parmak izinin aynı bucket’a gelme olasılığı yaklaşık
%0,41 (TP) olur.

◼ Farklı parmaklara ait iki parmak izinin aynı bucket’a gelme olasılığı
yaklaşık %0,0064 (FP) olur.

Locality-Sensitive Hashing - Uygulama

38

◼ F kümesinden 1024-way OR-construction yapılsın.

◼ OR-construction ile herhangi bir f fonksiyonu için aday yapılanlar (en az
bir aynı bucket) aday çift kabul edilir.

◼ OR-construction yapıldığında, (d1, d2, p1, p2)-sensitive kümesi,
(d1, d2, 1 - (1 - p1)

1024, 1 - (1 - p2)
1024)-sensitive kümesine dönüşür.

◼ Aynı parmağa ait iki parmak izinin en az bir (OR) aynı bucket’ta yer
alma olasılığı 1 - (1 - 0,004096)1024 = 0,985 (%98,5) olur.
(FN %1,5 – tanıma hatası, kontrol edilmesi gereken ancak kontrol
edilmeyen).

◼ İki farklı parmağa ait iki parmak izinin aynı bucket’ta yer alma olasılığı
1 - (1 - 0,000064)1024 = 0,063 (%6,3) olur.
(FP %6,3 – veritabanında gereksiz bakılan oran).

Locality-Sensitive Hashing - Uygulama

20

39

◼ Büyük veri içerisinde benzer görüntülerin (yüz, manzara, çizim, …)
bulunması için kullanılan yöntemlere yönelik bir araştırma ödevi
hazırlayınız.

Ödev

