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◼ Google, spammer’ları elimine edebilen ilk arama motorudur.

◼ Spammer, arama motoru sonuçlarını kullanışsız hale getirir.

◼ Google, Web sayfalarının önemini değerlendiren PageRank 
algoritmasını geliştirmiştir.

◼ Spammer’lar ise PageRank algoritmasını manipüle etmek için link spam 
yöntemini kullanmaya başlamıştır.

◼ Google, spammer’ların saldırılarını engellemek için TrustRank yöntemini 
geliştirmiştir.

PageRank
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◼ Google’dan önceki arama motorları crawl ettikleri Web sayfasında yer 
alan terimleri (boşluk hariç kelime veya string) inverted index kullanarak 
listelemekteydi.

◼ Bir search query alındığında, inverted index’ten ilgili sayfalar alınarak 
hesaplanan rank değerine göre sunulmaktaydı.

◼ Bir terimin sayfa başlığında olması veya sayfada sık geçmesi sorguya 
ilgililik düzeyini artırmaktaydı.

◼ Etik olmayan yöntemlerle ilk arama motorlarını kolaylıkla yanıltmak 
mümkündü.

◼ Örneğin, sık arama yapılan kelimeler background rengiyle çok sayıda 
yazılarak rank değeri yükseltilebilmekteydi.

◼ Bir sayfanın herhangi bir konuyla ilgili olduğuna yönelik arama 
motorlarının yanıltılması için kullanılan tekniklere term spam denir.

Term spam
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◼ PageRank, term spam ile mücadele için iki yöntem geliştirmiştir:

◼ PageRank Web kullanıcılarını simüle eder.

◼ Rastgele bir sayfadan başlayıp; outlink’leri rastgele seçen kullanıcıların (random 
surfer) hangi sayfalara gideceğini iterative bir şekilde belirler. 

◼ Çok gezilen sayfaları diğerlerine göre daha önemli kabul eder.

◼ Google gelen bir sorgu için cevap oluştururken önemli sayfaları tercih eder.

◼ Bir sayfa içeriğine sadece o sayfada yer alan terimlere göre karar 
vermez. 

◼ O sayfaya link veren sayfalarda linkin içerisinde veya yakınında bulunan terimlere 
göre önemine karar verilir. 

◼ Spammer kendi sayfasında term spam yapabilir, ancak kendi sayfasına link veren 
diğer sayfalarda kolaylıkla term spam yapamaz.

Term spam
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◼ Google, bir Web sayfasının kendisi için ifade ettiğini değil, diğer 
sayfaların onun için ifade ettiğini dikkate almaktadır.

◼ Spammer kendi sayfasına çok sayıda link veren sayfa oluşturabilir. 
Ancak, PageRank algoritmasında bu sayfaların da önemi düşük 
olacaktır.

◼ Her kullanıcı Web üzerinde gezinirken sayfalardaki linkleri seçerek bir 
oylama yapar.

◼ Web sayfasına faydalı olduğu düşünülen sayfaların linkleri konulur. 

◼ Faydalı olmayacağı düşünülen linkler genellikle yer almaz.

◼ Kullanıcılar faydalı sayfaları faydasız sayfalara göre daha çok ziyaret 
ederler.

Term spam
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◼ PageRank, Web’teki her sayfaya reel sayı atayan bir fonksiyondur.

◼ Atanan değeri yüksek olan sayfa PageRank için daha önemlidir.

◼ Web bir graf olarak düşünülebilir. Sayfalar node, linkler kenardır.

◼ Bir random surfer (rastgele seçim yapan kullanıcı) A düğümünde ise; B, 
C ve  D düğümlerini seçme olasılığı 1/3’tür. A’da kalma olasılığı 0’dır.

PageRank tanımı
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◼ Random surfer’ın bir sonraki için geçişi transition matrix (M) 

tanımlanabilir.

◼ mij = 1/k ise,  j. sayfada k tane outlink vardır ve bir tanesi i.sayfaya 
verilmiştir. mij = 0 ise link verilmemiştir.

◼ M matrisinin her sütunundaki değerlerin toplamı 1’e eşittir (stokastik 
matris).

◼ Herhangi bir sütundaki olasılık dağılımı PageRank fonksiyonudur.

PageRank tanımı
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◼ Bir random surfer başlangıçta Web’teki n sayfadan birisinde başlasın.

◼ Başlangıç vektörü v0 her eleman için 1/n değerine sahiptir. 

◼ M, Web’teki transition matrix (geçiş matrisi) olsun.

◼ Bir adım sonraki olasılık dağılımı  M v0 olur. 

◼ İki adım sonra M(Mv0)=M2v0 olur.

◼ Random surfer’ın sonraki adımda i node’una geçme olasılığı xi aşağıdaki 
gibi hesaplanır:

◼ vj , random surfer’ın önceki adımdan j node’unda olma olasılığıdır.

◼ mij , random surfer’ın j node’unda iken i node’una geçme olasılığıdır.

PageRank tanımı
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◼ Aşağıdaki şartlar altında v dağılımının limit değeri v = M v eşitliğini 
sağlar:

◼ Graf strongly connected yapıdadır (herhangi bir node’a herhangi bir node’dan 
ulaşılabilir.).

◼ Dead end yoktur (outlink olmayan sayfa yoktur.).

◼ v vektörüne M matrisinin principle eigenvector’ü denir. 

◼ v vektörü random surfer’ın uzun bir süre sonunda hangi sayfada 
olacağını gösterir. 

◼ Başlangıç vektörü v0 kullanılarak v vektörünün değeri belirli bir 
iterasyon sonrası için hesaplanır. 

◼ Çok küçük değişim oluncaya kadar iterasyon devam ettirilir. 

◼ Web için 50-75 arasında iterasyon yeterlidir.

PageRank tanımı
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Örnek

◼ M  transition matrisi ve v0 başlangıç vektörü.

◼ Eigenvector değerlerinin iterasyonlarla değişimi aşağıdaki gibi olur. 

◼ İlk satır değeri A düğümüne aittir ve diğerlerinin 3/2 katı çıkmıştır.

PageRank tanımı
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Web’in yapısı
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◼ Web’te çok sayıda strongly connected component (SCC) vardır (dead 
end sayfa yoktur).

◼ SCC olmayan büyük bir kısım vardır.

◼ In-component: Linkler takip edilerek SCC’ye ulaşan sayfaları içerir. 
Ancak, SCC’lerden bu elemanlara ulaşılamaz.

◼ Out-component: Linkler takip edilerek SCC’den ulaşılabilen sayfaları 
içerir. Ancak, bunlardan SCC’ye ulaşılamaz.

◼ Tendrils out: In-component’lerden ulaşılan sayfalardır. Bunlardan in-
component’lere ulaşılamaz.

◼ Tendrils in: Out-component’lere ulaşılan sayfalardır. Out-
component’lerden bunlara ulaşılamaz.

Web’in yapısı
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◼ Tubes: In-component’lerden ulaşılan ve out-component’lere ulaşan 
sayfalardır. SCC’den bunlara veya bunlardan SCC’ye ulaşılamaz.

◼ Isolated components: Kendisine ulaşılamayan ve kendisinden 
diğerlerine ulaşılamayan elemanlardır.

◼ Aşağıdaki iki sorundan kaçınmak gerekir:

◼ Dead end sayfalar: Dead end sayfalara ulaşan surfer başka sayfaya geçemez. Bu 
sayfalara ulaşan sayfalar için PageRank değeri elde edilemez. 

◼ Spider traps: İçerisinde outlink bulunan ancak başka sayfalara linke sahip olmayan 
bir grup sayfadır.

◼ Bu iki problemin çözümü için taxation metodu kullanılabilir.

◼ Taxation metodunda, random surfer’ın bir sayfadan ayrılma olasılığı 
sonludur ve yeni bir surfer herhangi bir sayfadan başlayabilir. 

Web’in yapısı
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◼ İçerisinde hiç outlink olmayan sayfalar dead end sayfalar olarak 
adlandırılır.

◼ M matrisi stokastik olmaz (bazı sütunların toplamı 0’a eşittir.).

◼ Bir sütunun değerleri toplamı en çok 1 olan matris substokastik olarak 
adlandırılır.

◼ M i v artan üsler için hesaplandığında elde edilen vector’ün bazı 
değerleri veya tüm değerleri 0’a yaklaşır. 

◼ Web sayfalarının göreceli önemine yönelik bilgi elde edilemez.

Dead end sayfalar
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Örnek

◼ C (dead end) sayfasına ulaşan random surfer sonraki adımda görünmez.

◼ M substokastik bir matristir (Burada C sütunu toplamı 0’dır.).

◼ Başlangıçtan itibaren hesaplanan vektör değerleri 0’a doğru gider.

◼ Random surfer’ın iterasyon arttıkça herhangi bir yerde olma olasılığı 
0 olur.

Dead end sayfalar
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◼ Dead end sayfa probleminin çözümünde iki yaklaşım kullanılabilir.

◼ Graftan dead end sayfalar atılır. 

◼ Bunun sonucunda çok sayıda yeni dead end sayfa oluşabilir. 

◼ Strongly connected component’lere ulaşıncaya kadar recursive olarak hepsi atılır. 

◼ Recursive silme işleminin sonucunda out-component’lerden, tendril’lerden ve 
tubes sayfalardan bir kısmı da silinebilir. 

◼ SCC, in-component ve isolated component’ler kalır.

◼ Grafta yer almayan sayfaların PageRank değeri öncüllerinin değerlerinin toplamı 
ile hesaplanır. 

◼ Graftaki öncül sayfaların değeri, silinen sayfaların adedine bölünür.

◼ Random surfer’ın izlediği süreç değiştirilir. 

◼ Random surfer’ın her durumda Web üzerinde hareket ettiği (bir sayfadan her 
durumda ayrıldığı) varsayılır (taxation metodu).

Dead end sayfalar
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Örnek

◼ E sayfası C sayfasının ardılıdır ve dead end’tir. 

◼ E sayfası silindiğinde C sayfası dead end olur.

◼ Graf A, B ve D sayfalarından oluşur.

◼ Geçiş matrisi aşağıdaki gibidir.

◼ PageRank değerleri A = 2/9, B = 4/9 ve D = 3/9. 

◼ C = 1/3*A+1/2*D =1/3*2/9+1/2*3/9 = 13/54 ve E = C = 13/54 olur.

Dead end sayfalar
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◼ Bir spider trap bir grup node’tur. Dead end değillerdir, ancak 
kendilerinden başka sayfalara giden bağlantıları yoktur.

◼ İterasyonun sonunda PageRank değerinin tamamını kendilerine atarlar.

Örnek

◼ C bir node’dan oluşan spider trap’tir.

◼ Random surfer  C sayfasından hiçbir zaman ayrılamaz.

Spider traps
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◼ Random surfer’ın outlink kullanmadan rastgele bir sayfaya geçişi için 
küçük bir olasılık tanımlanır.

◼ Yeni PageRank değeri aşağıdaki gibi hesaplanır.

◼  0.8-0.9 aralığında bir sabit, e tüm değerleri 1 olan vektör, n ise 
Web’teki node sayısıdır.

◼  M v, random surfer’ın out-link’ler kullanılarak  olasılığında geçişini 
belirler.

◼ (1 -  )e / n ise, (1 -  ) olasılığında surfer’ın rastgele bir sayfaya geçişini 
belirler.

Spider traps
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Örnek

 = 0.8, n = 4

Spider traps
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◼ Her arama motoru kendine özgü ve gizlenmiş bir formül ile sayfa 
sıralamasını yapmaktadır.

◼ Google Web sayfalarının sıralaması için 250’den fazla farklı özelliği 
kullandığını belirtmektedir. 

◼ Bir sayfanın sonuç listesinde yer alabilmesi için sorgudaki bir veya daha 
fazla kelimeyi içermesi zorunludur.

◼ Genellikle tüm kelimeleri içermeyen sayfaların ilk 10 sırada görülme 
şansı çok küçüktür.

◼ Sorgudaki aranan kelimelerin sayfaların başlığında veya linklerde (kendi 
kendisine linkler hariç) olması daha önemlidir.

Arama motorunda PageRank kullanımı
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◼ PageRank algoritmasının geliştirilmesiyle term spam yöntemleri etkisini 
kaybetmiştir.

◼ Spammer’lar ise PageRank algoritmasını yanıltmaya yönelik yeni 
yöntemler geliştirmiştir.

◼ PageRank algoritması için bir sayfanın öneminin yapay bir şekilde 
artırılması amacıyla kullanılan yöntemlere link spam denir.

◼ Link spam yöntemlerinin etkisiz olması için TrustRank ve spam mass 
ölçümü gibi yöntemler geliştirilmiştir.

Link Spam
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◼ Bir sayfanın veya bir grup sayfanın PageRank değerini artırmak için 
oluşturulan sayfa topluluğuna spam farm denir.

◼ Spammer açısından Web üç kısma ayrılır:

◼ Erişilemez sayfalar: Spammer bu sayfaları etkileyemez. Web’in büyük bölümü bu 
kısımdadır.

◼ Erişilebilir sayfalar: Spammer tarafından doğrudan kontrol edilmeyen, ancak 
spammer’ın etkileyebildiği sayfalardır.

◼ Sahip olduğu sayfalar: Spammer’ın sahip olduğu ve kontrol ettiği sayfalardır.

◼ Spam farm spammer’ın sahip olduğu sayfalardan oluşur.

◼ Arama motorları tarafından crawl yapılsa bile spam farm sayfalar 
kullanıcı için faydasızdır. 

Link spam yapısı
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◼ Birtakım yöntemlerle erişilebilir sayfalardan spam farm sayfalara link 
verilir.

Link spam yapısı
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◼ Dışarıdan kendisine link verilmemesi halinde spam farm içindeki Web
sayfalarını arama motorları crawl yapamaz.

◼ Günümüzde çok sayıda blog ve haber sitesi İnternet kullanıcılarını 
yorum post etmeleri için davet etmektedir.

◼ Spammer’lar bu tür sitelere spam farm sayfaların linkini içeren çok 
sayıda yorum mesajı post etmektedirler ("I agree. Please see my article 
at www.mySpamFarm.com").

◼ Spammer PageRank değerini yükseltmek istediği sayfadan spam farm 
sayfalara link verir.  

◼ Spam farm sayfaların tamamı da sadece PageRank değeri yükseltilmek 
istenen sayfaya link verir.

Link spam yapısı

http://www.myspamfarm.com/


18

35

Konular

▪ PageRank
▪ Term spam

▪ PageRank tanımı 

▪ Web’in yapısı

▪ Dead end sayfalar

▪ Spider traps

▪ Arama motorunda PageRank kullanımı 

◼ Link Spam
▪ Link spam yapısı

▪ Spam farm analizi

▪ TrustRank

▪ Spam mass

◼ Hub ve Otorite Sayfalar
▪ HITS algoritması

▪ Hub ve otorite tanımı

36

◼ PageRank taxation parametresi  = 0.85 olarak belirlenmiş olsun. 

◼  değeri sayfanın bir sonraki iterasyonda ardından gelecek sayfalar için 
hesaplanan PageRank değerini etkiler.

◼ Spam farm içerisinde m adet destekleyici sayfa olsun.

◼ Web’te toplam n sayfa olsun. 

◼ t  ise bir adet hedef sayfa olsun.

◼ x değeri, p adet erişilebilir 
sayfanın t sayfasına link vererek 
sağlayacağı toplam PageRank 
değeri olsun.

◼ y değeri, t sayfasının hesaplanan 
PageRank değeri olsun.

Spam farm analizi
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◼ Her bir destekleyici sayfa için PageRank değeri aşağıdaki gibi hesaplanır.

◼ İlk terim t sayfasının diğer sayfalara sağlayacağı değeri göstermektedir.

◼ t sayfasından kendisinin outlinki olan diğer sayfalara  y dağıtılır.

◼  y/m ile sonraki m adet sayfaya eşit olarak dağıtılır.

◼ İkinci terimde ise PageRank’in (1- ) oranı Web’teki tüm sayfalara 
dağıtılır.

◼ Hedef  t sayfasının PageRank değeri y, üç farklı kaynaktan elde edilir:

◼ x, dışarıdan t sayfasına linki olan sayfalardan gelen PageRank değeridir.

◼ Destek sayfalarından t sayfasına gelen PageRank değeri.

◼ Web’in tamamında (1- )/n ile  t sayfasına düşen PageRank değeridir. 
Çok küçük bir değerdir, analizi kolaylaştırmak için ihmal edilebilir.

Spam farm analizi

38

◼ İlk iki kaynaktan  t sayfasına gelen toplam PageRank değeri aşağıdaki 
gibi yazılabilir:

Örnek

◼  = 0,85 olursa 1/(1- 2) = 3,6 olur. 

◼ c =  /(1+ ) = 0,46 olur.

◼ Spam farm dışarıdan gelen x PageRank değerini 3,6 kat yükseltmiştir.

◼ Web’in içindeki oranına göre (m/n) (destekleyici sayfa sayısının tüm 
sayfa sayısına oranı) PageRank değeri %46 elde edilir. 

Link spam analizi
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◼ Arama motorlarının link spam’i algılayıp elimine etmesi gereklidir.

◼ Arama motorları tarafından bir sayfanın çok sayfaya link verdiği ve bu 
sayfaların da sadece kendisine link verdiği spam farm aranır.

◼ Bu yapıya uygun sayfalar indeksten çıkartılır.

◼ Spammer’lar farklı yapılar geliştirerek PageRank üzerinde aynı etkiyi elde 
etmeye çalışmışlardır.

◼ Spam farm sayfaların algılanıp elimine edilmesi için iki farklı yöntem 
geliştirilmiştir:

◼ TrustRank: Spam sayfaların skorunu azaltır.

◼ Spam mass: Spam sayfaları tanımlayacak bir hesaplama yapar ve tümüyle elimine 
eder veya PageRank değerini önemli oranda azaltır.

Link spam analizi
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◼ TrustRank spam olmadığı düşünülen sayfa kümesine (topic) sahiptir.

◼ Bir spam sayfa güvenilir sayfaya kolaylıkla link verebilir, ancak güvenilir 
sayfa spam sayfaya link vermez.

◼ Spammer’ların link yerleştirebildiği siteler blog siteleri ve diğer benzeri 
sitelerdir.

◼ Bu durumda, güvenilirliği yüksek olan bir blog sitesi veya 
kullanıcılarından yorum alan saygın bir haber sitesi de güvenilir kabul 
edilmez!!!

◼ Spammer’lar yorum olarak gönderdikleri metin içeriğine kendi 
sayfalarının linklerini yerleştirir.

TrustRank

42

◼ TrustRank için güvenilir sayfalardan oluşan bir küme oluşturulması 
gereklidir. 

◼ Bu sayfalar manuel olarak belirlenebilir. 

◼ En yüksek PageRank değerine sahip olan sayfalar alınabilir. 

◼ Link spam bir sayfanın PageRank değerini yükseltir, ancak güvenilir sayfalar 
düzeyine yaklaştıramaz.

◼ Spammer’ların kontrol etmelerinin zor olduğu bir domain alınır (.edu, 
.mil, .gov). 

◼ Güvenilir sayfalar genellikle ABD’deki sitelerden oluşmaktadır.

◼ Sayfaların iyi bir dağılım için farklı ülkelerden de seçilmesi daha uygun olur.

TrustRank
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◼ Spam mass yönteminde, her sayfanın PageRank değerinin bir kısmının 
spam’den geldiği kabul edilir.

◼ Bir p sayfasının PageRank değeri r ve TrustRank değeri  t olsun.

◼ TrustRank değeri sayfanın içeriğine ve aldığı linklere göre hesaplanır.

◼ p sayfasının spam mass değeri aşağıdaki gibi hesaplanır.

◼ Negatif veya küçük pozitif spam mass değerleri sayfanın muhtemelen 
spam olmadığını gösterir.

◼ 1’e yakın spam mass değerleri, sayfanın muhtemelen spam olduğunu 
gösterir.

◼ Yapılan çalışmalar, elimine edilen linklerin büyük bölümünün spam 
farm olduğunu göstermiştir.

Spam mass

rtrmassspam p /)(_ −=
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Örnek

◼ Graf için PageRank, TrustRank ve Spam Mass değerlerini hesaplayalım.

◼ Tablodaki değerler hesaplanmış olsun.

◼ B ve D, spam mass değerleri negatif olduğundan spam değildir.

◼ A ve C için PageRank değeri TrustRank değerlerinden büyük 
olduğundan spam mass değerleri hesaplanır.

◼ Spam mass değeri 0’a yakın olduğundan muhtemelen spam değildir.

Spam mass

229,0)9/3/()210/549/3( =−=A
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◼ Hub ve Otorite yaklaşımı PageRank algoritmasından kısa süre sonra 
geliştirilmiştir.

◼ Hub ve otorite algoritması kısaca HITS (Hyperlink-Induced Topic Search)
olarak da adlandırılır.

◼ HITS algoritması, PageRank algoritması gibi iteratif vektör ve matris 
hesaplamasını kullanır.

◼ HITS algoritması, PageRank algoritmasındaki kullanıcı sorgusundan 
önceki önişlemleri yapmaz.

◼ HITS algoritması, kullanıcı sorgusu geldiğinde sadece gelen sorgu için 
rank hesaplanır.

◼ Ask arama motoru HITS algoritmasını kullanmaktadır.

Hub ve Otorite Sayfalar
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◼ HITS algoritması iki tür önemli sayfa tanımlar:

◼ Belirli bir konu hakkında bilgi sağlayan sayfa (otorite).

◼ Bir konu hakkında bilgi sağlayan sayfaları gösteren sayfa (hub).

◼ Bir bölümdeki derslerin listesini bulunduran sayfa hub sayfadır.

◼ Dersler hakkında bilgi içeren sayfalar ise otorite sayfalardır.

◼ PageRank algoritmasında, eğer bir sayfaya önemli sayfalar link vermişse 
o sayfa önemlidir.

◼ HITS algoritmasında, bir sayfa önemli hub sayfadır eğer önemli otorite 
sayfalara link vermişse. 

◼ HITS algoritmasında, bir sayfa önemli otorite sayfadır eğer önemli hub 
sayfalar kendisine link vermişse.

HITS algoritması
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◼ Web sayfalarının ne kadar iyi hub sayfa olduğunu veya ne kadar iyi 
otorite sayfa olduğunu gösteren iki skor tanımlanır.

◼ Sayfaların tamamı h (hub) ve a (otorite) vektörleri ile ifade edilebilir.

◼ İki vektörde i.değer, i.sayfanın hub veya otorite değerini gösterir. 

◼ Bir sayfanın hub değerini hesaplamak için, ardından gelen sayfaların 
otorite değerleri kullanılır.

◼ Bir sayfanın otorite değerini hesaplamak için, önünde olan sayfaların 
hub değeri kullanılır.

◼ İteratif şekilde hesaplanan hub ve otorite değerleri her adımdan sonra 
maksimum 1 olacak şekilde ölçeklenir. 

◼ h ve a vektörlerinin hesaplanması için link matrisi oluşturulur.

Hub ve otorite tanımı
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◼ n adet sayfa için L link matrisi nn boyutunda kare matristir.

◼ Lij = 1 ise i.sayfadan j.sayfaya link vardır, Lij = 0 ise link yoktur.

◼ LT ise  L link matrisinin transpozudur.

◼ LT
ij = 1 ise j.sayfadan i.sayfaya link vardır, LT

ij = 0 ise link yoktur.

◼ LT matrisi PageRank algoritmasındaki M geçiş matrisine benzer. LT ‘nin 
1 olduğu yerde M geçiş matrisi (1/outlink_sayısı) değerine eşittir.

◼ Dead end ve spider traps sayfalar HITS algoritmasının anlamlı çift 
vektörü bulmasına engel olmaz.

◼ Taxation veya graf üzerinde preprocess yapılması gerekmez.

Hub ve otorite tanımı
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Örnek

Hub ve otorite tanımı
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◼ Bir sayfanın hub değeri ardındaki otorite sayfaların değeriyle gösterilir.

h = La

◼ Burada  ölçeklendirme sabitidir.

◼ Bir sayfanın otorite değeri önündeki hub sayfaların değeriyle gösterilir.

a = LTh

◼ Burada  ölçeklendirme sabitidir.

◼ h ve a birbirinden bağımsız şekilde hesaplanabilir.

h = LLTh

a = LTLa

◼ h vektörünün tüm değerleri 1 alınarak başlanır.

◼ a = LTh ve h = La için hesaplama yapılır ardından ölçekleme yapılır.

Hub ve otorite tanımı
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Örnek

◼ HITS algoritmasının iki iterasyonu için hesaplama.

Hub ve otorite tanımı

E’nin hub değeri 0’dır.

A en büyük hub’tır ve 
değeri 1’dir.

B ve C en iyi otoritedir.

B ve D önemli hub’tır.
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Ödev

◼ Topic-sensitive PageRank hakkında bir araştırma ödevi hazırlayınız. 


