BIL 362 Mikroislemciler

Hazirlayan: M.Ali Akcayol
Gazi Universitesi
Bilgisayar Miihendisligi Bolimui

iKonular

Veri Aktarim (Data Movement) Komutlar
= MOV Komutu

PUSH / POP Komutlan

LOAD Komutlan

String Data Transfer Komutlan

Diger Data Transfer Komutlan

Segment Override Prefix

Assembler Komutlan

Hafiza Organizasyonu

i MOV

= MOV komutu register-register veya register-memory arasinda
8086-80286 islemciler icin byte veya word 80386 ve ustu
islemciler icin byte, word veya doubleword data transfer
eder.

= MOV CX,DX komutu word (16-bit) boyutundaki DX icerigini
CX register’ina aktarir.

= 80386 ve Ustu islemcilerde doubleword (32-bit) boyutundaki
veri aktanlabilir.

= MOV ECX,EDX komutu doubleword EDX icerigini ECX
register’ina aktarr.

= MOV AL,22H komutu byte boyutundaki 22H degerini AL
register’ina aktarr.

i MOV

= 80386 ve ustu islemcilerde doubleword (32-bit) boyutundaki
data aktanlabilir.

= MOV EBX,12345678H komutu doubleword 12345678H
degerini EBX register’ina kopyalar.

= MOV CX,LIST komutu hafizada LIST adresindeki word
boyutundaki icerigi CX register’ina aktarir.

= MOV AX,[BX] komutu data segment icerisinde BX offset
adresindeki bir word datay1 AX register’ina aktarir.

PUSH / POP

= PUSH ve POP komutlar LIFO yapisindaki stack memory’den bilgi
almak veya bilgi depolamak icin kullamlirlar.

= Mikroislemci 6 farkli PUSH ve POP yapisina sahiptir: register,
memory, immediate, segment register, flags ve all registers.

= Register adresleme herhangi bir register iceriginin stack’a
saklanmasi veya stack’tan alinmasini saglar.

= Memory adresleme bir memory alaninin stack’a saklanmasi veya
stack’tan alinmasini saglar.

= Immediate adresleme sabit bir verinin stack’a saklanmasini saglar.

= Segment register adresleme bir segment register’in stack’a
saklanmasi veya stack’tan alinmasini saglar. CS PUSH edilebilir
ancak CS’ye POP edilemez.

= Flags adreslemede flag’lar stack’a saklanabilir veya stack’tan
alinabilir.

= All register adreslemede tum register icerikleri PUSH veya POP
edilebilir.

i PUSH

= 8086-80286 mikroislemcilerde PUSH komutu 16-bit data’yi
stack’a saklar veya stack’tan alir. 80386 ve ustu islemcilerde
2 veya 4 byte data stack’a saklanir.

= PUSHA komutu segment register’lari haric diger tim
register’lan stack’a saklar.

= PUSHA (push all) komutu register’larn AX,CX,DX,BX,SP,BP,SI
ve DI sirasinda stack’a saklar.

= PUSHF (push flags) komutu flag register’larin icerigini
stack’a saklar.

= PUSHAD ve POPAD komutlan 32-bit register’larin tumunu
stack’a push veya stack’tan pop eder.

= 16-bit push islemi yapildiginda soldaki 8-bit SP-1 ve sagdaki
8-bit SP-2 adresine yazilir.

i PUSH

= PUSH AX komutunun calismasindan sonraki durum asagida

gorulmektedir. Stack segment
= AH SP-1 ve AL SP-2 adresine saklanir.
b
._./———\
EAX ‘ 6ABS3 6AB3 N oa
/1 B3
_p/———____—/—_ T
TS R SIS
ESP | 07FE
P - —
CS =
DS 07
SS 00 _4

12FFF

03800
037FF
037FE <—

03000

i PUSH

PUSHA komutu 16-bit tum register’lan stack’a saklar.
Siralama AX,CX,DX,BX,SP,BP,SI ve DI seklindedir.
PUSHAD komutu 32-bit tum register’lan stack’a saklar.
PUSH ‘A’ komutu 0041H = 10T

degerini stack’a saklar.

AX

0041H = ASCII(A)

CX

DX

BX

SP

BP

Sl

SP after PUSHA ———|

DI

-

i PUSH

= Asagida PUSH komutlan goriulmektedir.

Symbolic Example Note
PUSH reg16 PUSH BX 16-bit register
PUSH reg32 PUSH EDX 32-bit register
PUSH mem16 PUSH WORD PTR[BX] 16-bit pointer
PUSH mem32 PUSH DWORD PTR[EBX] 32-bit pointer
PUSH seg PUSH DS Segment register
PUSH imm8 PUSH 'R’ 8-bit immediate
PUSH imm16 PUSH 1000H 16-bit immediate
PUSHD imm32 PUSHD 20 32-bit immediate
PUSHA PUSHA Save all 16-bit registers
PUSHAD PUSHAD Save all 32-bit registers
PUSHF PUSHF Save flags
PUSHFD PUSHFD Save EFLAGS

ol POP

= POP komutu stack’tan veri alir ve 16-bit register’a, segment
register’a veya 16-bit hafiza alanina saklar.

= 80386 ve uUstu islemcilerde 32-bit data aktarimi yapilabilir.

= POPF komutu stack’tan 16-bit alir ve flag’a aktarr.

= POPFD komutu stack’tan 32-bit alir ve extended flag’a
aktarir.

= POPA komutu 16 byte datayi stack’tan alir sirasiyla
DI,SI,BP,SP,BX,DX,CX ve AX register’larina aktarr.

= POPAD komutu 80386 ve ustu islemcilerde 32-bit
register’lara stack’tan deger alir.

= POP BX komutu stack’tan SP adresini BL’ye ve SP+1 adresini
BH’ye aktarir.

=l POP

= Asagidaki sekilde POP BX komutu calistiktan sonraki durum

gorulmektedir. Stack segment
OFFFF
L_—
]
i 01008 ~—
/1_/ 39 01007
EBX 392F 392F e P
-'____/—‘
ESP 1008
ﬁ/\-—“_“N
cs
DS 1003 00000
ss 0000 ®
——___] 00000 1008
| POP
= Asagida POP komutlar goriilmektedir.
Symbolic Example Note
POP reg16 POP CX 16-bit register
POP reg32 POP EBP 32-bit register
POP mem16 POP WORD PTR[BX+1] 16-bit pointer
POP mem32 POP DATA3 32-bit memory address
POP seg POP FS Segment register
POPA POPA Pops all 16-bit registers
POPAD POPAD Pops all 32-bit registers
POPF POPF Pop flags
POPFD POPFD Pop EFLAGS

i LOAD

= Herhangi bir hafiza alaninm veya bir operand’in offset adresini bir
register’a yuklemek icin kullamlir.

= LEA komutu 16-bit register’a operand’in offset adresini yiikler.
= LDS, LES 16-bit DS ve ES register’larina bir hafiza alanim yiikler.

= 80386 ve ustu islemcilerde LFS, LGS ve LSS komutlar 32-bit offset
adresinden FS, GS ve SS register’larina yukler.

= Asagida LOAD komutlan goriilmektedir.

Assembly Language Operation
LEA AX,NUMB Loads AX with the offset address of NUMB
LEA EAX,NUMB Loads EAX with the offset address of NUMB
LDS DI,LIST Loads DS and DI with the 32-bit contents of data segment memory location LIST
LDS EDI,LIST1 Loads the DS and EDI with the 48-bit contents of data segment memory location LIST1
LES BX,CAT Loads ES and BX with the 32-bit contents of data segment memory location CAT
LFS DI,DATA1 Loads FS and DI with the 32-bit contents of data segment memory location DATA1
LGS SI,DATAS Loads GS and Sl with the 32-bit contents of data segment memory location DATAS
LSS SPMEM Loads SS and SP with the 32-bit contents of data segment memory location MEM

i LOAD

= LEA komutu 16 veya 32-bit register’lara operand’la belirtilen
datanin offset adresini yukler.

= LEA AX; NUMB komutu NUMB operand’inin adresini AX’e
yukler.

= LEA BX,[DI] komutu [DI] operand’inin offset adresini BX’e
yliikler (DI icerigi). MOV BX,[DI] komutu [DI] operand’inin
gosterdigi adresteki datayr BX’e yiikler.

i LOAD

= Asagidaki ornekte once Sl register’ina DATA1 operand’inin offset
adresi yuklenir.

= Ardindan DI register’ina DATA2 operand’inin offset adresi yuklenir.

= Program calistiktan sonra DATA1 ve DATA2 hafiza alanlarinin icerigi
yer degistirilir.

.MODEL SMALL

.DATA

Dw 2000H
DW 3000H
.CODE

. STARTUP

LEA SI,DATAl

MOV DI,OQFFSET DATAZ
MOV BX, [SI]

MOV CX, [DI)

MOV [SI],CX

MOV [DI],BX

LJEXTT

END

;select small model

;start data segment
;define DATAI

;define DATAZ

;start code segment

;start program

;address DATA]l with SI
;address DATAZ2 with DI
;exchange DATAl with DATAZ

i LOAD

LDS, LES, LFS, LGS, LSS

= LDS, LES, LFS, LGS, LSS komutlar 16 veya 32-bit register’lardan
birisine offset adresini yukler, DS, ES, FS, GS, SS segment
register’larindan birisine segment adresini yukler.

= Bu komutlar segment ve offset adresini iceren 32-bit (16-bit
segment+16-bit offset) veya 48-bit (32-bit offset+16-bit segment)
hafiza alanina erisim yapar.

= LFS, LGS ve LSS komutlar 80386 ve ustu islemcilerde vardir.

LOAD

= Asagidaki ornekte LDS BX, [DI] komutunun calismasi gorulmektedir.
= Data segment’te DI ile adreslenen 32-bit alan BX ve DS’ye yuklenir.

. Dat: t
= Once offset adres, ardindan segment adres alinir. ————— -
EAX
EBX 6F2A S
VY e
30 11003
ESE 00 11002
BX = 127AH EBP 12 11001
7 A 11000 -——
DS = 3000H ESl
___—\
olur. EDI 1000 ———
__,/_\v—__
1000
cs
os| 1000
10000 10000
— 11000

LOAD

= Ensik kullanilan LSS komutudur. 80386 ve ustu islemcilerde vardir ve .386

deyimi .MODEL deyiminden hemen sonra kullanilmalidir.
.MODEL SMALL

0000
0000
0004

2004
0000

0010
0011
0013
0016
0018

001B
001D
001F
0022
0024

0025
0027
0029

00000000
1000 [

PRER

]

2004

c4
0000 R

0002 R

co
co
B2 26 0000 R

SADDR
SAREA

STOP

.386

.DATA

DD
Dw

EQU

?
1000H DUP(?)

THIS WORD

.CODE
. STARTUP

CLI
MOV
MOV
MoV
MOV

MOV
MOV
MOV
MOV
STI

MOV
MOV
LSS

AX,SP
WORD PTR SADDR, AX
AX,SS

;select small model
;select 80386
;start data segment
;old stack address
;new stack area

;define top of new stack
;start code segment
;start program

;disable interrupts
;save old SP

;save old SS

WORD PTR SADDR+2,AX

AX,DS
SS,AX
AX,QFFSET STOP
SP, AX

AX,AX
A¥,AX
SP, SADDR

CEXIT

END

;load new SS

;load new SP

;enable interrupts

;do some dummy instructions
;get old stack

;exit to DOS
;end program listing

i String Data Transfer

= LODS, STOS, MOVS, INS ve OUTS komutlar kullanilir. String
komutlar byte,word veya doubleword data transfer eder.

Direction Flag

= Flag register’daki D biti string islemleri icin DI ve Sl register’larinin
otomatik artinlmasi (D=0) veya otomatik azaltilmasi (D=1) i¢in
kullanmlir.

Direction biti sadece string islemlerinde kullamlir.

CLD komutu D=0 (clear) yapar, STD komutu D=1 (set) yapar.

String komutu bir byte transfer ederse SI/DI 1 degisir, bir word icin
SI/DI 2 degisir, doubleword icin SI/DI 4 degisir.

Her komut DI/SI ciftinden birisini kullanir. STOSB komutu DI
register’in1 artirir veya azaltir (S| degismez), LODSB Sl register’in
artinr veya azaltir (DI degismez).

Tum string komutlar DI offset adresiyle extra segment’e, Sl offset
adresiyle data segment’e erisir.

i String Data Transfer

LODS

= LODS komutu AL, AX veya EAX (80386 ve Ustl) register’larina data
segment’te S| register’iyla belirlenen offset adresinin icerigini yiikler.

= AL, AX veya EAX yiiklendiginde D=0 icin SI artinlir D=1 icin Sl azaltilir.

= Byte boyutunda transfer icin 1, word icin 2 ve doubleword icin 4 artiritir
veya azaltilir.

= LODSB (loads a byte) komutu AL register’ina bir byte, LODSW (loads a
word) AX register’ina bir word ve LODSD (loads a doubleword) EAX
register’ina bir doubleword yiukler.

Assembly Language Operation
LODSB AL =DS;[SI];SI=Sl+ 1
LODSW AX =DS:[SI];SI=8SI+2
LODSD EAX =DS:[SI];SI=SI + 4
LODS LIST AL = DS:[SI]; SI = SI £ 1 (if LIST is a byte)
LODS DATA1 AX = DS:[SI]; Sl = Sl = 2 (if DATA1 is a word)
LODS FROG EAX = DS:[SI]; SI = Sl + 4 (if FROG is a doubleword)

10

i String Data Transfer

Data segment

= Asagidaki sekilde LODSW komutunun 1FFFF

D=0, SI=1000H ve DS=1000H icin
calismasi gorulmektedir.
= 11000H ve 11001H AX’e yiiklenir. T

= D=0 oldugundan ve 16-bit transfer
edildiginden SI 2 artinlir.

= SI=1002 olacaktir.

EAX

ESP

EBP

ESI

EDI

/]____/" AO 11001
A 2 A 2
LER Rpescte SR B il i 11000 ~——

1000

10000

1000
(O]

10000 11000
DS| 1000 ©;

i String Data Transfer

STOS

= STOS komutu AL, AX veya EAX (80386 ve ustu) register’larin1 extra
segment’te DI register’iyla belirlenen offset adresine kopyalar.

= AL, AX veya EAX aktarildiginda D=0 icin DI artinlir D=1 icin DI azaltilir.
= Byte boyutunda transfer icin 1, word icin 2 ve doubleword icin 4 artiritir

veya azaltilir.

= STOSB (stores a byte) komutu AL register’ini, STOSW (stores a word) AX
register’im ve STOSD (stores a doubleword) EAX register’im extra
segment’te DI ile belirtilen offset adresine kopyalar.

Assembly Language Operation
STOSB ES:[DI]= AL; DI =DI = 1
STOSW ES:[DI]=AX;DI=DI+2
STOSD ES:[DI]=EAX;DI =Dl + 4
STOS LIST ES:[DI] = AL; DI = DI = 1 (if LIST is a byte)
STOS DATA3 ES:[DI] = AX; DI = DI = 2 (if DATA3 is a word)
STOS DATA4 ES:[DI] = EAX; DI = DI + 4 (if DATA4 is a doubleword)

11

String Data Transfer

STOS ve REP
= REP (repeat prefix) deyimi LODS haric diger string data
transfer komutlarina eklenir.

= REP deyimi her string komutu calistiginda CX sayacini 1
azaltir. CX = 0 oldugunda dongii biter ve sonraki komut calisir.

= CX=100 iken REP STOSB komutu, DI register’r her dongude 1
azalacagi veya artacagi icin AL register’inin icerigini 100
adreslik bir hafiza bloguna aktarir.

= STOSB (stores a byte) komutu AL register’ini, STOSW (stores a
word) AX register’in1 ve STOSD (stores a doubleword) EAX
register’in1 DI ile belirtilen extra segment alanina aktarir.

= STOSW komutu DI register’in1 2 degistirir, STOSD komutu 4
degistirir.

String Data Transfer

STOS ve REP
= Asagidaki 6rnek Buffer adli hafiza blogunu Count degeri kadar temizler.

= Program C++ ortaminda inline assembler ile yazilmis ve ClearBuffer
fonksiyonu caginlarak calistinlmaktadir.

= REP STOSW komutu Buffer adli hafiza blogunu AX=0 yazarak temizler.

void ClearBuffer (int Count, short* Buffer)
1(
_asm{
push edi ;save/registers
push es
push ds

mov ax,0
mov ecx, Count
mov edi, Buffer

pop es ;load ES with DS
rep stosw ;clear Buffer
pop es ;restore registers
pop edi
} her tekrarda ECX 1 azalir, EDI 2 (D=0)artar.

12

String Data Transfer

Operand operatorleri
= Herhangi bir operand operatorlerle birlikte kullanilabilir.

Operator Example Comment
+ MOV AL,6+3 Copies 9 into AL
- MOV AL,6-3 Copies 3 into AL
E MOV AL,4*3 Copies 12 into AL
i MOV AX,12/5 Copies 2 into AX (remainder is lost)
MOD MOV AX,12 MOD 7 Copies 5 into AX (quotient is lost)
AND MOV AX,12 AND 4 Copies 4 into AX (1100 AND 0100 = 0100)
OR MOV EAX,12 OR 1 Copies 13 into EAX (1100 OR 0001 = 1101)
NOT MOV AL,NOT 1 Copies 254 into AL (NOT 0000 0001 = 1111 1110 or 254)

* String Data Transfer

MOVS

= MOVS komutu iki hafiza alam arasinda string data aktarir.

= 8086-Pentium 4 mikroislemcilerde memory-to-memory islemine izin veren
tek komuttur.

= MOVS komutu data segment’te Sl ile adreslenen byte, word veya
doubleword data’y1 DI ile adreslenen extra segment’e kopyalar.

= Sl ve Dl icin artma/azalma direction bayragiyla belirlenir.

Assembly Language

Operation

MOVSB
MOVSW
MOVSD
MOVS BYTE1, BYTEZ2

MOVS WORD1,WORD2

MOVS TED,FRED

ES]
ES]
ES]

SlI); DI =DI = 1; Sl = Sl = 1 (byte transferred)

Sl]; DI = DI + 2; Sl = Sl + 2 (word transferred)

Sl]; DI = DI + 4; Sl = Sl + 4 (doubleword transferred)
(

ES:[DI] = DS:[SI]; DI = DI + 1; SI = SI = 1 (byte transferred if

BYTE1 and BYTE2 are bytes)

ES:[DI] = DS:[SI]; DI = DI + 2; Sl = Sl + 2 (word transferred if

WORD1 and WORD?2 are words)

ES:[DI] = DS:[SI]; DI = DI 4; Sl = Sl + 4 (doubleword transferred

if TED and FRED are doublewords)

13

String Data Transfer

Blok I ransfer

= REP MOVSD komutu BlockA’y1 BlockB’ye kopyalar.

void TransferBlocks (int BlockSize,

<

int* BlogkhA, int* BlockB)

_asm{
push es egisters
push edi
push esi
push ds ;copy DS into ES
pop es
mov esi, BlockA ;address BlockA
mov edi, BlockB ;address BlockB
mov ecx, BlockSize ; load count
rep movsd ;move data
pop esi ;restore registers
pop edi
pop es

i String Data Transfer

INS

= INS komutu bir 1/0 cihazindan byte, word veya doubleword data’y1 extra
segment icerisinde DI ile adreslenen alana aktarir. (8086/8088’de yoktur.)

= 1/0 adresi DX register’indan alinir.
= Bir harici I/0 cihazindan hafizaya blok data aktariminda etkindir.
= INSB byte, INSW word ve INSD doubleword data transfer eder.

Assembly Language Operation
INSB ES:[DI] = [DX]; DI = DI + 1 (byte transferred)
INSW ES:[DI] = [DX]; DI = DI + 2 (word transferred)
INSD ES:[DI] = [DX]; DI = DI £ 4 (doubleword transferred)
INS LIST ES:[DI] = [DX]; DI = DI = 1 (if LIST is a byte)
INS DATA4 ES:[DI] = [DX]; DI = DI + 2 (if DATA4 is a word)
INS DATAS ES:[DI] = [DX]; DI = DI + 4 (if DATAS5 is a doubleword)

14

String Data Transfer

INS - ornek

= Asagidaki ornekte 03ACH adresine sahip 1/0 cihazindan 50 byte data’yr
extra segment’te LISTS dizisine aktanlir.

MOV DI,QOFFSET LISTS

MOV DX, 3ACH

CLD

MOV CX,50
REP INSB

;address array
;address I1/0
;auto-increment
: load counter

; input data

i String Data Transfer

OouTS

= OUTS komutu data segment icerisinden Sl ile adreslenen alandan byte,
word veya doubleword data’y1 bir I/0 cihazina aktarir. (8086/8088’de

yoktur.)

= |/0 adres DX register’indadr.

= Bir blok datanin harici I/0 cihazina aktariminda etkindir.
= OUTSB byte, OUTW word ve OUTSD doubleword data transfer eder.

Assembly Language Operation
ouTSB [DX] = DS:[SI]; SI = Sl = 1 (byte transferred)
QUTSW [DX] = DS:[SI]; SI Sl = 2 (word transferred)
OUTSD [DX] = DS:[SI]; SI = Sl = 4 (doubleword transferred)
OUTS DATA7 [DX] = DS:[SI]; SI Sl + 1 (if DATA7 is a byte)
OUTS DATAS [DX] = DS:[SI]; SI = Sl + 2 (if DATA8 is a word)
OUTS DATA9 [DX] = DS:[SI]; SI = Sl = 4 (if DATA9 is a doubleword)

15

String Data Transfer

OUTS - ornek

= Asagidaki ornekte data segment’te ARRAY adresindeki 100 byte data 03ACH
adresine sahip /0 cihazina aktarnlir.

MOV SI,OFFSET ARRAY ;address array
MOV DX, 3ACH raddress I/0
CLD ;auto-increment
MOV CX, 100 :locad counter
REP OUTSEB ;output data

i Diger Data Transfer Komutlari

XCHG

= XCHG komutu iki register veya bir register ile bir hafiza alam arasinda
data’y1 karsiikli degistirir.

= XCHG komutu segment register’larim degistiremez veya memory-to-
memory degistiremez.

= XCHG AL,[DI] ile XCHG [DI],AL ayni islemi yapar.

Assembly Language Operation
XCHG AL,CL Exchanges the contents of AL with CL
XCHG CX,BP Exchanges the contents of CX with BP
XCHG EDX,ESI Exchanges the contents of EDX with ESI
XCHG AL,DATA2 Exchanges the contents of AL with data segment memory location DATA2

16

* Diger Data Transfer Komutlan
IN ve OUT

= IN komutu harici I/0 cihazindan AL,AX ve EAX register’larina data aktarir.
= OUT komutu AL,AX ve EAX’ten harici I1/0 cihazina data aktarr.
= 16-bit 1/0 port adres Address Bus ile ilgili cihaza iletilir.

= Fixed port adreslemede port adresi opcode’dan hemen sonra gelir.
Variable port adreslemede DX register’1 port adresini saklar.

Assembly Language Operation
IN AL,p8 8 bits are input to AL from I/O port p8
IN AX,p8 16 bits are input to AX from I/O port p8
IN EAX,p8 32 bits are input to EAX from I/O port p8
IN AL,DX 8 bits are input to AL from 1/O port DX
IN AX,DX 16 bits are input to AX from I/O port DX
IN EAX,DX 32 bits are input to EAX from I/O port DX
OUT p8,AL 8 bits are output to I/O port p8 from AL
OUT p8,AX 16 bits are output to 1/O port p8 from AX
OUT p8,EAX 32 bits are output to I/0 port p8 from EAX
OUT DX,AL 8 bits are output to 1/O port DX from AL
OUT DX,AX 16 bits are output to I/O port DX from AX
OUT DX,EAX 32 bits are output to I/0 port DX from EAX

* Diger Data Transfer Komutlan
IN ve

UT - ornek
= Asagidaki 6rnekte OUT 19H,AX komutunun calismasi goriilmektedir.

= AXicerigi 1/0 port 19H adresine aktanlir. Adres bus 0019H (16-bit)
degerine, data bus AX icerigine ve control bus IOCW (I/0 write control)
kontrol isaretine (lojik 0 ilgili I/0 cihazim etkin yapar (enable)) sahiptir.

(Port data)

Contents of register AX Data bus (D0-D15)

(Port address)

0019H Address bus (A0-A15)

(Port control) . OWC

17

Segment Override Prefix

= Komutlar icin default (varsayilan) register degistirilerek farkli
segment’teki data’ya erismeyi saglar.

= MOV AX,[DI] komutu default olarak data segment’e erisir. MOV
AX,ES:[DI] komutu extra segment’e erismeyi saglar.

= Asagida bazi komutlar goriilmektedir.

Assembly Language Segment Accessed Default Segment
MOV AX,DS:[BP] Data Stack
MOV AX,ES:[BP] Extra Stack
MOV AX,SS:[DI] Stack Data

MOV AX,CS:LIST Code Data

MQV ES:[SI],AX Extra Data
LODS ES:DATA1 Extra Data

MOV EAX,FS:DATA2 FS Data

MOV GS:[ECX],BL GS Data

Assembler Komutlan

= Assembler komutlan (directives), operand veya programin bir kisminda
assembler tarafindan nasil islem yapilacagim belirler.

Directive Function
.286 Selects the 80286 instruction set
.286P Selects the 80286 protected mode instruction set
.386 Selects the 80386 instruction set
.386P Selects the 80386 protected mode instruction set
486 Selects the 80486 instruction set
.486P Selects the 80498 protected mode instruction set
.586 Selects the Pentium instruction set
.586P Selects the Pentium protected mode instruction set
.686 Selects the Pentium Pro—Pentium 4 instruction set
.686P Selects the Pentium Pro—Pentium 4 protected mode instruction set
287 Selects the 80287 math coprocessor
.387 Selects the 80387 math coprocessor
.CODE Indicates the start of the code segment (models only)
.DATA Indicates the start of the data segment (models only)
EXIT Exits to DOS (models only)
.MODEL Selects the programming model
.STACK Selects the start of the stack segment (models only)
STARTUP Indicates the starting instruction in a program (models only)
ALIGN n Align to boundary n (n = 2 for words, n = 4 for doublewords)
ASSUME Informs the assembler to name each segment (full segments only)

BYTE Indicates bvte-sized. as in BYTE PTR

i Assembler Komutlan

Defines byfe(s) (8 bits)

DD Defines doubleword(s) (32 bits)

DQ Defines quadwords(s) (64 bits)

DT Defines ten byte(s) (80 bits)

DUP Generates duplicates

DW Defines word(s) (16 bits)

DWORD Indicates doubleword-sized, as in DWORD PTR
END Ends a program file

ENDM Ends a MACRO sequence

ENDP Ends a procedure

ENDS Ends a segment or data structure

EQU Equates data or a label to a label

FAR Defines a far pointer as in FAR PTR
MACRO Designates the start of a MACRO sequence
NEAR Defines a near pointer as in NEAR PTR
OFFSET Specifies an offset address

ORG Sets the origin within a segment
OWORD Indicates octalwords, as in OWORD PTR
PROC Starts a procedure

PTR Designates a pointer

SEGMENT Starts a segment for full segments
STACK Starts a stack segment for full segments
STRUC Defines the start of a data structure
USES Automatically pushes and pops registers
USE16 Uses 16-bit instruction mode

USE32 Uses 32-bit instruction mode

WORD Indicates word-sized, as in WORD PTR

i Assembler Komutlan

DB (define byte), DW (define word) ve DD (define
doubleword) hafiza tanimlama ve data aktarmak icin
kullanmbir.

SEGMENT deyimiyle istenildigi kadar yeni sembolik isme sahip
segment tanimlanabilir.

DB, DW ve DD komutlariyla tanimlanan alanlar ? ile sonraki
kullanimlar icin reserve edilebilir.

DUP (duplicates) komutu bir dizi olusturur. 10 DUP (?) komutu
herhangi bir deger atamadan 10 hafiza alan1 ayirir.

DATA1 DB 10 DUP (2) komutu 10 byte hafiza alanini ayirir ve
her birisinin icerisine 02H atar.

19

Assembler Komutlan

ornek 0000 LIST_SEG SEGMENT
0000 01 02 03 DATAlL DB 1,2,3
0003 45 DB 45H
0004 41 DB 'A'
0005 FO DE 111100008
0006 Q00C 000D DATAZ DwWw 12,13
000A 0200 DW LIST1
000C 2345 DW 2345H
000E 00000300 DATA3 DD 300H
0012 4007DF3B DD 2.:123
0016 544269E1 DD 3.34E+12
001a 00 LISTA DB *?
001B 000A[LISTB DB 10 DUP(?)
?7?
1
0025 00 ALIGN 2
0026 0100(LISTC DW 100H DUP(0)
0000
]
0226 0016[LISTD DD 22 DUP(?)
2227272277
]
027E 0064[SIXES DB 100 DUP(6)
06
]
02E2 LIST_SEG ENDS

;define bytes
;hexadecimal
;ASCII

;binary

;define words
;symbolic
;hexadecimal
;define doubleword
;real

;real

;reserve 1 byte
;reserve 10 bytes

;set word boundary
;reserve 100H words

;reserve 22 doublewords

;reserve 100 bytes

Assembler Komutlan
ASSUME, EQU ve ORG

= ASSUME deyimi code, data, extra ve stack segment icin secilen isimleri
belirtmek icin kullamlr. EQU (equate) deyimi bir sayiy1, ASCII karakteri

veya etiketi baska bir etikete esitler.

= ORG (origin) deyimi data segment icindeki offset adresini degistirmek icin
kullanitir. THIS deyimi THIS BYTE, THIS WORD veya THIS DWORD seklinde

kullanmlir ve ilgili etikete belirtilen data aktarilabilir. ,
:Using the THIS and ORG directives
0000 DATA_SEG SEGMENT
0300 ORG 300H
= 0300 DATA1 EQU THIS BYTE
0300 DATAZ DW ?
0302 DATA_SEG ENDS
0000 CODE_SEG SEGMENT 'CODE'
ASSUME CS:CODE_SEG, DS:DATA_SEG
0000 8A 1E 0300 R MOV BL,DATAL
0004 Al 0300 R MOV AX,DATAZ
0007 8A 3E 0301 R MOV BH,DATALl+1l
000B CODE_SEG ENDS

20

Assembler Komutlan

PROC ve ENDP

PROC ve ENDP deyimleri bir prosediiriin baslangicini ve bitisini gosterir.
PROC ve ENDP deyimleri baslangi¢ ve bitisi icin etikete gerek duyarlar.
PROC deyimi NEAR veya FAR seklinde iki ifade kullanir.

NEAR (lokal) procediiriin ayn1 code segment’e yerlestirilmesi, FAR (global)
hafizada herhangi bir yere yerlestirilmesini saglar.
Asagidaki ornekte BX, CX, DX toplanarak sonu¢ AX register’ina
aktanlmaktadir.
;A procedure that adds BX, CX, and DX with the
;sum stored in AX

i

0000 ADDEM PROC FAR ;start of procedure
0000 03 D9 ADD BX;CX

Uou2 U3 DA EDD TR, DA

0004 8B C3 MOV AX,BX

0006 CB RET

0007 ADDEM ENDP ;end of procedure

Hafiza Organizasyonu

Assembler iki farkli hafiza organizasyonu kullanir. Birisi model kullanimi digeri tiim
segment tanimlarinin (full-segment definitions) yapilmasidir.

Model kullanmimi kolaydir ve basit programlarda kullanilmalidir.

Full-segment definitions assembly dilinnde daha iyi kontrol saglar ve kompleks
programlarda kullanilmalidir.

Model

MASM assembler tiny, small, medium, compact, large, huge, flat modelleri
kullanir.

Tiny model tiim programin 64 KB tek segment’e sigdirnlmasini saglar.

Small model bir data segment ve bir code segment kullanilmasini saglar ve toplam
boyut 128KB olur.

Medium model birden cok code segment ve bir data segment kullanilmasini saglar.
Compact model, bir code segment ve birden cok data segment kullanilmasim
saglar.

Large model, birden cok code segment ve birden cok data segment kullanilmasini
saglar. 64K dan bilyiik dizi kullanilamaz.

Huge model, birden cok code segment ve birden cok data segment kullanilmasini
saglar. 64K dan biyiik dizi kullanilabilir.

Flat model, 4GB’a kadar bir segment kullanilmasini saglar. Tiim data ve code 32-bit
bir segmentte bulunabilir.

21

i Hafiza Organizasyonu

Model

= Asagidaki ornekte 100-byte LISTA isimli hafiza blogunu LISTB alamna

kopyalar. SMALL small model

t dala segment

0000 0064 LISTA DB 100 DUP(?)
]
0064 0064 LISTB DB 100 DUP(?)
?7?
1
.CODE ;start code segment
0000 B9 ---- 7 HERE: ; load ES and DS
003 BE C(
0 E D8
;move data
O000B BF 0064 R MOV DI,OQFFSET LISTB
0O00E B9 0064 MOV CX, 100
0011 F3/24 REP MOVSB
0013 .EXIT 0 ;exit to DOS

LEND HERE

i Hafiza Organizasyonu

Full-Segment Tanimi

= Model yaklasimina gore daha yapisaldir. Ornek sonraki sayfadadir.

s STACK_SEG icin ayrilan alan SEGMENT ve ENDS arasidir.

= DW 100H DUP(?) komutu stack segment icin 100H adet word alan olusturur.
= STACK kelimesi SS ve SP register’larimi otomatik olarak yiikler.

s DATA_SEG icin LISTA ve LISTB her eleman byte olan 100 elemanl iki dizi
tanimlanmistir.

= CODE_SEG ile ENDS arasi code segment’i gostermektedir.
= ‘DATA’ ve ‘CODE’ kelimeleri MS CodeView ile debug islemi icin kullamlr.

= ASSUME deyimi SS icin STACK_SEG, DS icin DATA_SEG ve CS icin CODE_SEG
isminin kullamldigim gosterir.

0000 STACK_SEG SEGMENT ' STACK'
0000 0064] DW 100H DUP(?)

2R3

]

0200 STACK_SEG ENDS
0000 DATA_SEG SEGMENT 'DATA'
0000 0064 LISTA DB 100 DUP(?)

??

]

0064 0064] LISTB DB 100 DUP(?)

72

]
00CB DATA_SEG ENDS
0000 CODE_SEG SEGMENT 'CODE"’
SSUME :CODE_SEG, DS: DATA_SEG
ASSUME ¢ CK_SEG
0000 MATN PROC FZ2
0000 B8 ---- R MOV AX,DATA_ SEG ;load DS and ES
0003 8E CO0 MOV
0005 8E D8 MOV
0007 FC CLD ;save data
0008 BE 0000 R MOV SI,OFFSET LISTA
000B BF 0064 R MOV DI,OFFSET LISTB
000E BY 0064 MOV CX,100
0011 F3/A4 REP MOVSB
0013 B4 4C MOV AH, 4CH ;exit to DOS
0015 CD 21 INT 21H
0017 MATN ENDP
0017 CODE_SEG ENDS
END MATN

i Odev

= Her birisi byte olan 10 elemanli DIZI1 adli dizinin elemanlarini
hepsi byte olan 100 elemanli DIZI2 adli diziye 10 kez ardarda
kopyalayan bir program yaziniz. Programda gerekli
gordiigliniiz yerlere aciklama yaziniz. Program courier new
font ile ve 12 boyutunda yazilacaktir. Programda sadece
etiket, komut ve aciklama kisimlarinin yazilmasi yeterlidir.

23

