BIL 362 Mikroislemciler

Hazirlayan: M.Ali Akcayol
Gazi Universitesi
Bilgisayar Miihendisligi Bolimui

i Konular

Program Kontrol Komutlan

= Sartsiz Atlama
Sartli Atlama
Donguler (Loop)
Assembly Programi Akis Denetimi
While Donguleri
Repeat-Until Donguleri
Prosedurler
Kesmelere (Interrupts) Giris
Diger Komutlar




Sartsiz Atlama

Kontrol komutlari programin bir kismina atlamayi saglar.
Kontrol komutlarn bayrak bitlerinin durumuna gore sarth

atlamay1 gerceklestir.

Short jump, near jump ve far jump olmak uzere 3 tur sartsiz

atlama komutu kullanilabilir.

Sartsiz Atlama

Short jump komutu 2 byte uzunlugundadir ve bulunulan yere gore
+127 ve -128 adres araligina atlama yapar.

Near jump 3 byte uzunlugundadir ve bulunulan segment icerisinde

+32K araligina atlama yapar.

Far jump 5 byte uzunlugundadir ve hafizada herhangi bir alana

atlamayi gerceklestirir.

Short ve near jump intrasegment, far jump intersegment atlama

yapar- Opcode

E B Disp

Short

Disp
E8 Low

Disp
High

Opcode

Near

IP

EA Low

P
High

CS
Low

cs
High




Sartsiz Atlama

Short jump
= Bulunulan segment icerisinde goreceli atlama yapar.

= Opcode icinde atlanacak adres yerine bulunulan yere uzaklik verilir.
= JMP SHORT NEXT seklinde kullanmlir. NEXT atlanacak yerdir.

0000
0002
0005
0007

0020
0022

33
B8

DB
0001
@3

EB 17

8B D8
EB~E

0009H + 0017H = 0020H

XOR
MOV
ADD
JMP

BX, BX

AX,1

AX,BX
SHORT NEXT

START:
1000A

10009
10008
10007
10006
10005
10004

<skipped memory locations>

MOV
JMP

NEXT: BX, AX

G e 10008
10002
10001

10000

Memory

r—’_F/

(Jump to here)

CS = 1000H
IP = 0002H
New P =1P + 4
New IP = 0006H

04
JMP

Sartsiz Atlama

Near jump
Near jump, short jump gibi ayn1 segment icerisinde atlama yapar
ancak short jump’a gore daha uzun araliga atlar.

Bulunulan segment icerisinde £32K araligina atlama yapar. 80386 ve
Ustl islemcilerde protected mode’da +2G araligina atlama yapar.

0000
0002
0005
0007

0200
0202

BX, BX
A¥, 1
AX,BX
NEXT

<skipped memory locations>

33DB Z0OR
B8 0001 START: MOV
03 €3 ADD
E9 0200 R JMP
8B D8 NEXT: MOV
E9 0002 R JMP

BX, AX
START




i Sartsiz Atlama

Far jump

= Far jump yeni bir segment ve offset adres alir ve dogrudan istenen

adrese atlar.

= Far jump FAR PTR komutuyla veya far label etiketiyle belirtilir.

0000 33 DB
0002 B8 0001
0005 E9 0200 R

0200 8B D8
0202 EA 0002 ----

0207 EA 0000 ---- R

START:

NEXT:

EXTRN UP:FAR
XOR BX,BX
ADD BAX,1

JMP NEXT

<skipped memory locations>

MOV BX, AX
JMP FAR PTR START

JMP UP

Sartli Atlama

= Sartlh atlama komutlarn 8086-80286 islemcilerde short jump yapar.

Assembly Language Tested Condition Operation
JA Z=0andC=0 Jump if above
JAE C=0 Jump if above or equal
JB G=1 Jump if below
JBE Z=1orC=1 Jump if below or equal
JC @i=fl Jump if carry
JE orJzZ Z=1 Jump if equal or jump if zero
JG Z=0andS=0 Jump if greater than
JGE S=0 Jump if greater than or equal
JL Sl=0 Jump if less than
JLE Z=10rS!=0 Jump if less than or equal
JNC C=0 Jump if no carry
JNE or JNZ Z=0 Jump if not equal or jump if not zero
JNO 0=0 Jump if no overflow
JNS S=0 Jump if no sign (positive)
JNP or JPO P=0 Jump if no parity or jump if parity odd
JO 0=1 Jump if overflow
JP or JPE Pi= Jump if parity or jump if parity even
JS S=1 Jump if sign (negative)
JCXZ CX=0 Jump if CX is zero
JECXZ ECX=0 Jump if ECX equals zero




= +127 ile -128 arasinda atlama yapar. MASM v.6X assembler uzaklig
otomatik ayarlar.

= Sartlh atlama komutlan S, Z, C, P ve O bayrak bitlerini kontrol eder.

= Test edilen sart dogru (true, 1) ise etiketle belirtilen yere atlanir,
yanlis (false, 0) ise sonraki adim caltistinlir.

= Karsilastirma islemi signed (isaretli) ve unsigned (isaretsiz) sayilarda

farkli sonuclar olusturur. Unsigned numbers Signed numbers
. . ’ ’ 255 FFH +127 7FH
= Isaretsiz sayilarda FFH (255) 25« FEH 1126 7EH
sayisi 00H (0) sayisindan e |
bUVUKtUr. 132 84H +2 02H
i ] 131 83H +1 01H
= [saretli sayilarda FFH (-1) 150 B2H +0 O0H
129 81H -1 FFH
sayis1t 00OH (0) sayisindan 128 BOH -2 FEH
e oo . _—\_‘\J _\_——\_’
kucuktur.
4 04H -124 84H
3 03H -125 83H
2 02H -126 82H
1 01H -127 81H
0 00H -128 80H

Sarth Atlama

Sarth Atlama

= Isaretli sayilarda karsilastirma icin JG, JL, JGE, JLE, JE ve JNE
komutlar kullanilir.

= [saretsiz sayilarda karsilastirma icin JA, JB, JAE, JBE, JE ve JNE
komutlar kullanilir.

= Diger sartli atlama komutlari bayrak bitlerini test eder.

= JCXZ ve JECXZ komutlar1 CX ve ECX register’larini test eder ve 0 ise
istenen yere atlama yapar.

= Asagidaki ornekte 100 byte alan icinde OAH degerini arar.

0017
001a
001cC
001D
001F
0020
0022

;Instructions that search a table of 100H bytes for 0AH
;The offset address of TABLE is assumed to be in ST

B9 0064 MOV CX,100 ;load counter

BO 0Aa MOV AL, QAH ;load AL with 0AH
FC CLD ;auto-increment
F2/AE REPNE SCASB ;search for 0AH

F9 siie jset carry if found
E3 01 JCXZ NOT_FQUND ;if not found

NOT_FOUND




Donguler (Loop)

= LOOP komutu CX azaltma ve JNZ sartli atlama komutlarinin
birlesimidir.

= Her adimda CX register’1 1 azaltilir ve CX degeri test edilir.

= 8086-80286 islemcilerde CX azaltilir ve CX<>0 oldugu siirece
belirtilen etikete atlanir. CX=0 ise sonraki adima gecilir.

= 80386 ve ustu islemcilerde CX veya ECX kullanilir. LOOPW
komutu CX, LOOPD komutu ECX register’imi kullanir.

Sarth LOOP

= LOOPE (Loop while equal) ve LOOPNE (Loop while not equal)

komutlart CX<>0 ve verilen sart gecerli oldugu siirece dongtiyu
tekrarlar.

= 80386 ve ustu islemcilerde CX veya ECX kullanilabilir.
LOOPEW/LOOPNEW ve LOOPED/LOOPNED komutlar CX ve ECX
register’larin kullanir.

Dongliler (Loop)
= Ornekte BLOCK1 de word boyutundaki data BLOCK2 ye eklenir.

;A program that sums the contents of BLOCKl and BLOCKZ2

and ores the results on top of the data in BLOCK:

.MODEL SMALIL ;select SMALL model
Juogo DATA ;start a segment
0000 0064 | BLOCK1 DW 100 DUP(?) ;100 words for BLOCK1

]
0000 ) )

0000 .CODE

STARTUP
0019 8E CO

Lil :




Assembly Programi Akis Denetimi

= MASM 6.X assembler .IF, o2F Bl ;;B'A,;J g0 wl s R
.ELSE, .ELSEIF, .ENDIF, E— o
.REPEAT, .UNTIL, .WHILE SUB AL, 30H
ve .ENDW gibi komutlan
saglar.

= Yandaki ornekte .IF ve char temp;

.ENDIF ile yapilan islemin _asm{

assembly komutlariyla movy ‘al,temp
. . . cmp al,4lh

gerceklestirilmesi ib  Later

gorulmektedir. cmp al,46h

ja Later

sub al,7
Later:

sub al,30h

mov temp,al

Assembly Programi Akis Denetimi

= Asagida .IF komutuyla kullanilabilecek iliskisel operatorler
gorulmektedir.

Operator Function

== Equal or the same as

I= Not equal

> Greater than
e Greater than or equal
< Less than
<= Less than or equal

& Bit test

! Logical inversion
&& Logical AND

Il Logical OR

I OR




;A DOS program that reads the keyboard and converts all
;lowercase data to uppercase before displaying it.

i
:-| ;This program is terminated with a control-C
.MODEL TI ;select tiny model

Ornek < ;list all statements
0000 .CODE ;start code segment
.STARTUP ;start program
@Startup
MAIN1: MOV AH,6 ;read key without echo
MOV. DL, OFFH
INT 21H
JE MAINL ;if no key
CMP AL,3 ;test for control-C
JE MAINZ ;if control-C

JIF AL »>= 'a' && AL <= 'z'

Assembler

. . cmp al,'a’'

uretir jb @C0001
* cmp al,'z'
* ja @C0001

SUB AL, 20H

.ENDIF
* @Cc0001
MOV DL, AL ;echo character to display
INT 21H
JMP MATINI1 ;repeat
MAIN2 :
.EXIT
* MOV AH, 4CH
* INT 21H
END

While Donguleri

= Yiiksek seviyeli dillerde oldugu gibi MASM 6.X WHILE dongii
yapisi icermektedir.

= .WHILE deyimi sart kismini, .ENDW ise dongu bitisini gosterir.

= .WHILE deyimindeki sart kismi dogru oldugu siirece dongii
tekrarlanir. Her dongude sart tekrar kontrol edilir.

= Sart dogru olmadiginda .ENDW deyiminden sonraki adima
gecilir.
= Sonraki sayfadaki ornekte klavyeden ODH (Enter) girilene

kadar tum girisler ekstra segment icerisinde BUF adli diziye
kaydedilir.

= While dongulerinde .BREAK ve .CONTINUE deyimleri kullanilir.
= .BREAK .IF AL == ODH komutu AL==0 ise donguden c¢ikis yapar.

= .CONTINUE .IF AL==15 komutu AL==15 ise dongu sonuna
kadarki kism1 atlar ve sonraki dongliye devam eder.




;A DOS program that reads a

character string from the

;keyboard and then displays it again.

.MODEL SMALL ;select small model
0000 .DATA ;start data segment
0000 0D 0a MES DB 13,10 jreturn and line feed
0002 0100 [ BUF DB 256 DUP(? ;jcharacter string buffer

00
1

0000 .CODE ;start code segment

. STARTUP ;start program
0017 8C D8 MOV AX,DX ;overlap DS with ES
0019 8C CO MOV ES,AX
001B FC CLD ;select auto-increment
001C BF 0002 R MOV DI,OFFSET BUF ;address buffer

;loop while not enter

001F EB 05 jmp @CO0001
0021 * @C0002:
0021 B4 01 MOV AH, 1 ;read key
0023 €D 214 INT 21H
0025 aa STOSB ;store key code
0026 © @C0001:
0026 IC€ OB cmp al, 0dh
0028 75 F7 jne @C0002
002A C6 45 FF 24 MOV BYTE PTR[DI-1]'&’
002E BA 0000 R MOV DX,QFFSET MES
0031 B4 09 MOV AH,9
0033 CD 21 INT 21H ;display MES

~BXIT

END

Repeat-Until Donguleri

= Yiksek seviyeli dillerde oldugu gibi MASM 6.X REPEAT-UNTIL
dongu yapisi icermektedir.

= .UNTIL deyimi sart kismini, .REPEAT ise dongu baslangicin
gosterir.

= Dongii icindeki deyimler sart kismi1 dogru oldugu siirece
tekrarlanir. Her dongude sart tekrar kontrol edilir.

= Sart dogru olmadiginda .UNTIL deyiminden sonraki adima
gecilir.

= Sonraki sayfadaki ornekte klavyeden ODH (Enter) girilene
kadar tum girisler ekstra segment icerisinde BUF adli diziye
kaydedilir.

= Repeat dongulerinde .UNTILCXZ deyimi kullanilir ve her
dongude CX register’in1 bir azaltarak kontrol eder.




;A DOS program that reads a character string from the
;keyboard and then displays it again.

i

-MODEL SMALL

;select small model

0000 .DATA ;start data segment
0000 0D 0OA MES DB e P ;return and line feed
0002 0100([ BUF DB 256 DUP(?) ;character string buffer
00
]
0000 .CODE ;start code segment
.STARTUP ;jstart program
0017 8C D8 MOV AX, DS ;overlap DS with ES
0019 8C CO MOV ES,AX
001B FC CLD ;select auto-increment
001C BF 0002 R MOV DI,OFFSET BUF ;jaddress buffer
;repeat until enter
001F * @C0001:
001F B4 01 MOV AH,1 ;jread key
0021 CD 21 INT 21H
0023 AA STOSB ;store key code
0025 3C 0D = cmp al,0dh
0027 75 F7 * jne @C0001
0028 C6 45 FF 24 MOV BYTE PTR[DI-1]'&"'
002C BA 0000 R MOV DX, OFFSET MES
002E B4 09 MOV AH, 9
pa3E. eb 21 INT 21H ;display MES
.EXIT
END

Repeat-Until Donguleri

= Asagidaki ornekte CX register’1 her dongiide bir azaltilarak
kontrol edilir.

= CX <> 0 oldugu siirece dongii tekrarlanir.

0lz2c¢
012F
0132
0135

0138
0138
0139
013B
QL3

013D

E9
BF
BE
BB

AC
02

43

E2

0064 MOV CX,100
00Cc8 R MOV DI,QFFSET THREE
0000 R MOV SI,QOFFSET ONE
0064 R MOV BX,0FFSET TWO
* @Cc0001:

LODSB
07 ADD AL, [BX]

STOSB

INC BX
F9 * LOOP @C0001

;set count
;address arrays

10



Prosedurler

Prosedurler programlarin yeniden kullanilabilir olan ve
genellikle sadece bir fonksiyonu gerceklestiren kisimlandir.
CALL komutu bir prosedure gecis icin, RET komutu ise geri
donus icin kullambir.

Bir prosediir cagrildiginda stack geri donis adresini saklar.
CALL komutu stack’a bir sonraki adresi (return) push eder.
RET komutu stack’tan bir adresi geri donus adresi olarak alir.

Bir prosedur PROC deyimiyle baslar ve ENDP ile biter. Her
ikisinden once prosedurun adi belirtilir.

PROC deyiminden sonra NEAR (intrasegment) ve FAR
(intersegment) olarak tur belirtilir.

NEAR ve FAR deyimlerinden sonra USE deyimiyle hangi
register’larin kullanilacagi belirtilebilir. Belirtilen register’lar
stack’a otomatik olarak push ve pop edilir.

Prosedurler
Ornek
0000 SUMS PROC NEAR
0000 03 C3 ADD AX,BX
0002 03 C1 ADD AX,CX
0004 03 C2 ADD A¥X, DX
0006 C3 RET
0007 SUMS ENDP
0007 SUMS1 PROC FAR
07 03 €3 ADD AX,BX
0009 03 C1 ADD AX,CX
000B 03 C2 ADD AX,DX
000D CB RET
Q00E SUMS1 ENDP
000E SUMS3 PROC NEAR USE BX CX DX
QLT 03 @3 ADD AX,BX
0013 03 C1 ADD AX,CX
QUEs 03 2 AP AX DX

RET

001B SUMS ENDP

11



CALL

Prosedurler

= Near return komutu stack’tan 16-bit deger alir ve IP’ye doniis
adresi olarak atar.

= Far return komutu stack’tan 32-bit deger alir ve IP ile CS’ye
donus adresi olarak atar.

= CALL komutu ad1 verilen prosediirii cagirir ve donis adresini
stack’a saklar.

= Near CALL komutu 3 byte boyutundadir. ilk byte opcode,
ikinci ve ucuncu byte donus adresidir (£32K).

= 80386 ve uUstu islemcilerde protected mode’da donus adresi 4
byte (x2G) olur.

= Far CALL komutu 5 byte boyutundadir. ilk byte opcode, 2-3 IP
ve 4-5 CS’ nin yeni degeridir.
= CALL komutu IP ve CS degerlerini stack’a push eder.

Prosedurler

CALL - ornek

AFFFF
AFFFE
SP —» AFFFD

11003
11002
11001
11000

10004
10003
10002
10001
10000

Memory
]

00

03

(Procedure)

OF

FF

CALL

Stack

SP before CALL = FFFF
SS before CALL = AO0O
IP before CALL = 0003

} Near CALL /

AFFFF
AFFFE
AFFFD
AFFFC
SP —= AFFFB

11003
11002
11001
11000

10004
10003
10002
10001
10000

Memory
— |

10
00
00

05

S
- i

(Procedure)

11

00

00

02

CALL

Stack

Far CALL

SP before CALL = FFFF
SS before CALL = A000
IP before CALL = 0005

12



Prosedurler

CALL - register ile cagirma

o CALL komutlan register operand kullanabilir (CALL BX).

» [P stack’a push edilir ve aym segmentte BX offset adresine gecilir.
o Asagidaki ornekte CALL BX ile DISP prosediirii cagirilmaktadir.

« Ayniislem CALL DISP seklinde yapilabilir.

:A DOS program that displays OK using the DISP procedure.

iMODEL TINY ;select tiny model
0000 .CODE ;start code segment
.STARTUP ;etart program
0100 BB 0110 R MOV BX,0OFFSET DISP 7 ltljdd_ BX with offset DISP
0103 B2 4F MOV DL, 'O ;display O
0105 FF D3 CALL BX )
0107 B2 4B MOV DL, 'K' ;display K
0109 FF D3 CALL BX
.EXIT

;Procedure that displays the ASCITI character in DL

0110 DISP PROC NEAR

0110 B4 02 MOV AH, 2 ;select function 2
0112 CD:21 INT 21H ;execute DOS function 2
0114 c3 RET
f14.5 DIEP ENDP
END
Prosedurler

CALL - dolayli hafiza adresiyle cagirma

o CALL komutlar indirect adres kullanabilir (CALL [BX]).

« Genellikle bir lookup tablodan secilen farkli prosedurlerin kullamminda
faydalidir.

» Asagidaki 6rnekte EBX degerine gore ZERO, ONE veya TWO prosediirlerine
gecis yapilir.

o CALL FAR PTR [4*EBX] komutu far cagirma yapar veya eger tablo

doubleword tamimli ise (DD) CALL TABLE[4*EBX] komutu far cagirma yapar.

;Instruction that calls procedure ZERO, ONE, or TWO
;depending on the value in EBX

TABLE DW ZERO ;address of procedure ZERO

DW ONE ;address of procedure ONE
DW WO ;address of procedure TWO

CALL TABLE[2*EBX]

13



RET

Prosedurler

» RET komutu near return icin 16-bit sayiy1 stack’tan alir ve IP’ye atar. Far

return icin 32-bit sayy1 stack’tan alir ve IP ve CS’ye atar.

o Asagidaki ornekte SS=A000 ve CS=1000 degerine sahiptir. CALL isleminden
once SP=FFFF ve IP=0003 degerindedir.
o CALL’dan sonra SP=FFFD, IP=0FFF.

» RET isleminden sonra SP=FFFF,

IP=0003 ve Efektif adres=11003 olur.

SP —» AFFFF

AFFFE
AFFFD

11003
11002
11001
11000

10004
10003
10002
10001
10000

Memory

00
03

Stack

RET Near RET

(Return here)
OF
FF
CALL

RET

Prosedurler

» RET komutu doniis adresini stack’tan sildikten sonra SP degerine belirli bir
deger ekleyebilir. Boylece, prosediir cagrildiginda stack’a push edilen
parametreler kadar deger eklenerek bu parametrelerin atilmasi saglanir.

« Ornekte AX ve BX (4 byte) prosediir cagrilmadan énce stack’a push
ediliyor. RET 4 ile donus adresinden sonra SP’e 4 ekleyerek AX,BX’i atar.

0000
0003
0006
0007
0008

0071
0071
0072
0074
0077
007A
007B
007E

BS
BB
50
53
E8

55
8B
8B
03
5D
c2

001E
0028

0066

=
o o ()
oo
[

1=

0004

ADDM

ADDM

MOV
MOV

PUSH
PUSH
CALL

PROC
PUSH
MOV
MOV
ADD
POP
RET
ENDP

AX, 30
BX, 40
AX
BX
ADDM

NEAR

BP

BP, SP

RY, [BP+4]
AX, [BP+6]
BP

4

;etack parameter 1
;stack parameter 2
;add stack parameters

;save BP

;address stack with BP
;get parameter 1

radd parameter 2
;restore BP

;return,

dump parameters

14



Odev

Hafizada bir alanda bulunan ve herbirisi word boyutunda olan 100 adet
say1y1 kiiclikten bliylige dogru siralanmis olarak hafizadaki ikinci bir diziye
aktaran program yaziniz.

istenen siralama algoritmas kullanilabilir.

Program emu8086 ile yazilacaktir.

Odevin hem ciktisi teslim edilecek hemde kaynak kodu
akcayol@gazi.edu.tr adresine e-posta ile gonderilecektir.

15



