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Olasilik teorisi

Olaslilik teorisi, rastgele/belirsiz olaylarin analizi ile ilgilenir.

Yapay zeka (artificial intelligence - AI) uygulamalarinda
olasilik teorisi iki sekilde kullanilir:

Olasllik teorilerini kullanarak olusturulan problemlerin Al
sistemleriyle g6ziimiinde olasilik kurallarindan faydalanilr.

AI sistemlerinin davranisinin analizinde olasilik ve istatistik
kullanilabilir.

Olasilik teorisi, belirsizligin varliginin nedenini agiklar;

bilgi teorisi, olasilik dagiimdaki belirsizlik miktarini dlger.
Olasilik teorisi ilk olarak olaylarin sikhgini analiz etmek igin
gelistirilmistir.

Bilgisayar bilimlerinin bircok alaninda girisler kesindir ve
deterministiktir.

Makine 6grenmesi belirsiz ve stokastik biyiikliiklerle ugrasir.
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Olasilik teorisi

Belirsizligin olasi 3 kaynagi vardir:

Sistemde var olan dogal stokastik ozellikler
modelleniyor olabilir.
Eksik gozlemleme yapiimis olabilir.
Sistem davranisini ifade eden degiskenlerin timi
gozlemlenmemis olabilir.
Eksik modelleme yapiimig olabilir.
Sistemdeki bazi bilgiler goz ardi edilebilir, bunlar belirsizlige yol
acabilir.
Bazen basit ancak belirsiz bir kurali kullanmak daha
pratiktir ve olusturmak daha az maliyetlidir(Kuslarin cogu ugar.).

Deterministik ve karmasik bir kurali olusturmak daha
maliyetlidir ve hata halen ortaya cikabilir (U¢may: heniiz
ogrenmemis geng kuslar, ucma yetenegini kaybetmis hasta ve yarali
kuslar disindaki kuglar ugar.).




Olasilik teorisi

Bayesian probability:
Mutlak dogru veya yanlis kesinlik igeren Bayesian olasiligidir
{0, 1} (Doktorun hasta igin grip veya degil seklindeki kararr).

Frequentist probability:

Tekrara dayah olasilik iceren siklik olasiligidir [0, 1]

(Belirli semptomlar: gésteren hastalarin %40 grip olma olasiligt).
Olasilik teorisi, belirsizlige sahip bir 6Gnermenin dogru veya
yanhishgini tanimlamak igin bicimsel kurallari saglar.
Random variable: Rastgele farkli degerler alabilen
degiskendir.

Rastgele degiskenler, kesikli veya siirekli olabilir.
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Olasilik dagihmlari

Kesikli degiskenler ve olasilik kiitle fonksiyonlari
Probability distribution, bir rastgele degiskenin veya degisken
kiimesinin her durumu igin nasil deger aldigini tanimlar.

Kesikli degisken (izerinde olasilik dagilimi probability mass
function (PMF) kullanilarak tanimlanabilir.

PMF, bir random degiskenin bir durumdan baska bir duruma
gegcis olasiligini eslestiren fonksiyondur.

P(x) = 1 ise X’e gecis kesindir, P(x) = 0 ise Xe gegis
olanaksizdrr.

PMF, birden fazla degisken (zerinde islem yapabilir.

Bu tir olasilik dagilimlarina joint probability distribution denir.
P(Xx=X,y=Y),Xx=xVvey=Y'nin es zamanl olma
olasihgidir P(x, y).

Olasilik dagihmlari
Bir rastgele x degiskeni lizerinde tanimlanan probability mass
function P, asagidaki 6zellikleri saglamak zorundadir:

P’nin domain’i, X degiskeninin olasi tiim durumlarinin
kiimesi olmak zorundadir.

0’dan kiigiik ve 1'den biiyiik olasilia sahip durum olamaz.
VXEX, 0<P(X)<1.
Tum durumlarin olasilik toplami 1 olmahdir (normalized).
2 .P(X)=1.
Uniform distribution: k duruma sahip bir rastgele X degiskeninde
tiim durumlar esit olasiliga sahiptir.

P(X =1;) = I tiim Vler i¢in

STC T e S




Olasilik dagihmlari

Siirekli degiskenler ve olasilik yogunluk fonksiyonlari

Siirekli degisken Uzerinde olasilik dagihmi probability density
function (PDF) kullanarak tanimlanabilir.

Probability density function p, asagidaki 6zellikleri
saglamak zorundadir:

p’nin domain’i, x degiskeninin olasi tiim durumlarinin
kiimesi olmak zorundadir.

0’dan kiigiik olasiliga sahip durum olamaz.

Vr € x,p(x) > 0.

Tum durumlarin olasilik toplanm 1 olmahdir.

[ p(x)de=1
PDF, belirli bir durum igin degil, bir aralik icin olasilhigi verir.
l]'[a‘b],_r:a(.;r*)rf,r, X degiskeninin [a, b] araligindaki olasiligini verir.
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Marijinal olasilik

Marginal probability: Bir altkiime tizerindeki olasilik
dagilimina marjinal olasilik dagilimi denir.

X ve Y kesikli rastgele degiskenler icin olasilik dagilimi P(X, y)
olsun.

Belirli bir y aralidi icin P(X) asadidaki gibi ifade edilir.

Verex,Plx=ux)= Z Plx=zy=1y)
Yy
Surekli degiskenler icin p(x) asadidaki gibi ifade edilir.

p(r) = /.p(,r‘.y)dy
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Sartli olasilik

Bazen bir olay olduktan sonra, ona bagl olarak baska bir
olayin olma olasiligini bilmek gerekebilir (conditional
probability).

y=yve x=Xigin P(y =y | X = X) seklinde gosterilir.
Sartli olasilik P(y =y | X = X) asadidaki gibi hesaplanabilir.
Ply=yx=1)

P(x=x)

P(}r = .'Jf N = ‘}’J =

Yukaridaki sarth olasilik P(x = x) > 0 ise tanimlanabilir (sart
olusmadan ardil hesaplanamaz).

Bir olayin ardillarinin hesaplanmasina intervention query denir.
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Beklenen deger

Cok sayida degerden olusan biiyiik bir kiimede degiskenlerin
ortalama degerleri 6nemlidir.

Beklenen deger, P(x) dagiimina gore f (x) fonksiyonunun
ortalama degerini ifade eder.

EJXL:EZJj(n

T

BX)= [ f(a)is

Beklenen deger

Ornek:

X, (a, b) araliginda uniform bir dagiima sahipse, beklenen
degeri bulalim.

- a<z<b
0 rz<aorx>b

Uniform dagilim igin beklenen deger aritmetik ortalamaya esittir.
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Beklenen deger

Ornek:
X, [0, 1] araliginda siirekli rastgele degisken ise beklenen

degeri bulalim.
2z 0<z<1
/(=) = {0 otherwise
EX=["_ af(z)dz
= fola;(2a:)d:z:
- fol 2x2dx
2

:3.
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Varyans

Varyans, bir rastgele x degiskeninin aldigi degerlerin
degisimini gésterir (c2).

Varyans, gerceklesen deger ile beklenen degerin farklarinin
karelerinin toplaminin aritmetik ortalamasidir.

o7 =VIX]= D (x—0)* = E[(X - w’]

xeD

(r_f. =V[X] =f(.\' - ,u)z - f(x)dx = E[X:]—[EX]2

Standart sapma, varyansin karekokudir (o).

Varyans

Ornek:

Bir zar icin varyans ve standart sapmayi bulalim.
Beklenen deger;

n=1(5) +2(5) +3(5) +4(5) +5(5) +°(5) = 3

(X — p)? icin beklenen deger;

z m(z) (z—7/2)°
1 1/6 254
2 1/6 9/4
3 1/6 1/4
1 1/6 1/4
5 1/6 9/4
6 1/6 254
25 5\ 35
E((X - p)?) = V(X)= é(§+§+§+1+% %)z »

Standart sapma; D(X) = /35/12 ~ 1.707

20




Varyans

E[X?)= [% 22 f(z)d=x

Ornek:
X, siirekli rastgele degisken icin varyansi bulalim.
3
()= { =]
0 otherwise
=I5 %dm

Var(X) = B(X*)~(EX)? = 3~ ~

V3

Standart sapma; >

= floo %da:

T

= [_ %m—z] — [— 3m1]
3 : -
E-

g_

3
4
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Yaygin kullanilan dagihmlar
Olasilik dagilimlari gergcek yasamdaki uygulamalarin
analizinde yaygin kullanilir.

Olasilik dagilimlari ile olaylarin sonraki gerceklesme
zamanlari, gergeklesme sikliklari tahmin edilebilir.

Ileriye doniik verilerin ortalama degerleri,
maksimum/minimum degerleri tahmin edilebilir.

En yaygin kullanilan dagilimlar:
Bernoulli dagilimi
Binomial dagilim
Poisson dagilimi
Uniform dagiim
Normal dagihm
Exponential dagilim
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Yaygin kullanilan dagihmlar

Bernoulli dagilhimi

Bernoulli dagilimi iki olasiliga sahiptir ve olaylar
bagimsizdir (yaz/tura, dogru/yanls).

Bernoulli dagiiminda, rastgele degigken X, p olasilikla 1,
(1- p) olasilikla O degerine sahiptir. bty

(1-p, x=0 s
P(x) _{ b
E[X] = p Var[X] = p(1 - p) '

p = 0,4 igin Bernoulli dagilimi
sekildeki gibidir.




Yaygin kullanilan dagilimlar
Binomial dagilim
Asagidaki varsayimlar yapilmistir:

N adet deneme veya test yapiimistir.
Her deneme basarili veya basarisiz sonuglanmistir.
Basari olasiligi (p) tiim denemelerde esit sansa sahiptir.
Farkli denemeler birbirinden bagimsizdir.
N adet denemede toplam basarili sayisi ile ilgilenilir.

Yukaridaki varsayimlar altinda X toplam basar sayisidir ve
binomial dagilima sahiptir.

. n! .
PX =x)= ﬁpr(l —p)"t 2=0,1,2,...,n
zl(n — x)!
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Yaygin kullanilan dagihmlar

Binomial dagilim - uygulamalar
Asagidaki durumlarda binomial dagihm kullaniimaktadir:
Bir is yerinde galisan erkek/bayan sayisi
Basarili satis aramalarinin sayisi
Bir Uretimde hatali trlinlerin sayisi
Addaki bilgisayarlarda bir ayda ariza olan giin sayisi
Bir aga es zamanli giren kullanici sayisi
Addaki toplam kullanici sayisi n = 35, es zamanl kullanici
sayisi X = 11, bir kisinin adi kullandigi stirenin oranmi p = 0,1
olmak (izere, 11 kisinin es zamanh aga girme olasiligi %0,033;

@) = (“)pm P = p¥(1 - p)

(1 = 0,1'1(1 —0,1)35"11=0,00033

11!(35 11)!
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Yaygin kullanilan dagihmlar

Binomial dagilim - 6rnek
Bir sinavda 10 tane 4 segenekli soru vardir (n = 10 ve p = 1/4).
Bir 6grenci tamamen rastgele cevaplarsa;

: . 10! .
Hic dogru cevap PX=0) = o (0.25)°(1 — 0.25)""°
vermeme olasiligi; '(_ 1 )

= (0.75)

= 0.0563
T v ]_O' 2 8
Iki dogru cevap P(X =2) = ﬁ(o.%) (1-0.25)
verme olasiligi; = 45-(0.25)2- (0.75)°

= 0.2816

Testte basarisiz olma  P(X <5) = ZP(X =)
(5 ve altinda dogru) =0

-
: — 0.0563 + 0.1877 + 0.2816 + 0.2503
olasiligi; B o

+0.1460 + 0.0584
— 0.9803 ,

Yaygin kullanilan dagihmlar

Binomial dagilim
Binomial dagihmda beklenen deder ve varyans;

nw=E(X)=np

o =V(X)=np(l —p)

4 sikh 10 sorudan olusan sinav 6rnedi igin;

E(X)=10-0.25=25.
V(X)=10-(0.25)- (1 —0.25) = 1.875
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Yaygin kullanilan dagihmlar

Poisson dagilimi
Asagidaki varsayimlar altinda ortaya cikar:

Bir zaman araligindaki belirli sayidaki olay ile bagka zaman
araligindaki belirli sayidaki olay birbirinden bagimsizdir.

Bir zaman araligindaki belirli sayidaki olay dagilimi, ayni
boyuttaki tiim zaman araliklari igin aymidir.

Zaman araliginin kiiclik bir parcasi icin bir olayin olma
olasiligi, zaman araliginin tiim uzunlugdu ile oransaldir.
A olayin olma orani, t zaman aralidi ise, X belirlenen zaman
araliginda olayin olma sayisidir. u = A.t, t araliginda ortalama
€T
olay sayisidir. P(X =) = {_.,f;f#_l r=012 ...
‘ T
Beklenen deger ile varyans;
EX)=u V(X)=pn
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Yaygin kullanilan dagihmlar

Poisson dagilimi - uygulamalar
Asagidaki durumlarda Poisson dagilimi kullanilabilir:

Bir bankaya saatlik gelen musteri sayisi
Bir otoyolda glinliik kaza sayisi
Belirli bir Web sunucuya saatlik erisim sayisi
Ankara’da glinliik acil cagri sayisi
Bir kitaptaki yazim hatasi sayisi
Biyuk bir sirkette aylik devamsizlik yapan calisan sayisi
Belirli bir trln icin aylik talep sayisi
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Yaygin kullanilan dagihmlar

Poisson dagilimi - 6rnek
Bir kitapta her 100 sayfada ortalama 1,5 yazim hatasi
vardir (u =1,5).
Rastgele 100 sayfa P(X =0)= (,—uf — (w—1-5l'_50 = (.2231
secildiginde hata ' ! 0!
olmama olasiligs;

[ V0
Rastgele 400 sayfa P(X =0) = ¢ 154 (1.5-4)

secildiginde hata 000470 0!
olmama olasiligy; = V.0V

Rastgele 400 sayfa P(X =5) = ZO P(X =)

secildiginde 5 ve — 0.0025 + 0.0149 + 0.0446 + 0.0892
altinda hata +0.1339 + 0.1606
olmama olasiligi; 04457

Yaygin kullanilan dagihmlar

Uniform dagilim
X rastgele degiskeninin dagihm fonksiyonu asagidaki gibi ise
uniform dagilima sahiptir:
1
f(x)

= —xx <a<r<b< o
T ob—a

f(x)

1
b-a

a b X
Beklenen deder ve varyans;

( _ 2
EX) = ! ; b V(X) = (b—a)
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Yaygin kullanilan dagihmlar

Uniform dagilim - 6rnek

Bir benzin istasyonu uniform dagilima sahip olarak giinde
2000 It - 5000 It arasinda benzin satmaktadir.

Bir glin icin 2500 It-3000 It arasinda benzin satma olasiligi;

P(2500 < X < 3000) = (3000 — 2500) fix)

5000 — 2000

|
= 0.1667. S000-2000 |

2,000 5000 x

Bir giin igin en az 4000 It benzin satma olasilig;

- 1
5 _

0.3333. 3,000

2,000 5,000 X
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Yaygin kullanilan dagihmlar

Normal dagilim

X rastgele degiskenin dagihm fonksiyonu asagidaki gibi ise
normal dadilima sahiptir (n ortalama ve o standart sapma):

flx)= ! v l_'r_l"' ’ —00 < & < X0
_.r)f\/g-(xp 3 - 0 < .

u

Beklenen deger ve varyans;
EX)=p V(X)=o?

8
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Yaygin kullanilan dagihmlar

Normal dagilim - 6rnek

Bir bilgisayari toplamak ortalama 50dk almaktadir. Standart
sapma 10dk.

Yeni gelen bir bilgisayarin tam
60 dk’da toplanma olasiligi;

1 ?_0_5.( (601—.35']) ):
10V 2=n

= 0.0048

Yeni gelen bir bilgisayarin tam
50 dk’da toplanma olasiligi;

s [ (30-30) \2
1 0.5 (—10 )

= 0.00798

0 i 40 0 0 100

10V 2 ¢
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Yaygin kullanilan dagihmlar

Exponential dagilim
X rastgele degiskeninin dagihm fonksiyonu asagidaki gibi ise
exponential dagiima sahiptir (A = oran):

flz)=Xe ™  2>0

Asadidaki araliklar icin;
P{X<zl=1-—e™

P{X >a}=e™

Plz; < X <ao} = ML _ AT

Beklenen deger ve varyans;

B(X) —% V(X) = (%)2
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Yaygin kullanilan dagihmlar

Exponential dagilim - 6rnek

Bir alkali bataryanin omrii X, exponential dagilima sahiptir ve
A = 0,05/saat.

Bu bataryanin ortalama 6émrl kag saattir;

1

BX) =55

=20

ot

Bataryanin 10-15 saat arasinda bitme olasiligi nedir?
P10 < X < 15) = ¢ 00510 _ p=00515 — 0 1341
Bataryanin 20 saatten sonra bitme olasiligi nedir?

P(X > 20) = ¢ "% =0.3679
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Bayes kurall

Bayes kurali Reverend Thomas Bayes tarafindan bulunmustur.

Bayes kurali, bir olayin olma olasiligina bagh olarak,
baska bir olayin sarth olma olasiligini hesaplamak igin
kullanilir.

p Y [ j)(x)jj(.\-" | X)
P(x|y) = 0
Burada,
P(x) X olayinin olma olasiligini,
P(y) y olayinin olma olasiligini,
P(y | X) y olayinin X olayina bagl olma olasiligini,

P(x|y) X olayininy olayina bagh olma olasiligini
ifade eder.
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Bilgi teorisi
Entropi, rastgele degere sahip bir degisken veya bir sistem igin
belirsizlik dlgiitiidiir.
Enformasyon, rastgele bir olayin gerceklesmesi halinde ortaya
cikan bilgi dlgutidiir.
Bir siireg igin entropi, tim ornekler (durumlar) tarafindan
icerilen enformasyonun degeridir.
Esit olasilikh durumlara sahip sistemler yiiksek
belirsizlige sahiptirler.
Shannon, bir sistemdeki durum degisikliginde, entropideki
degisimin enformasyon boyutunu tanimladigini éne
surmastar.
Buna gore bir sistemdeki belirsizlik arttikga, bir durum
gerceklestiginde elde edilecek enformasyon boyutu da
artacaktir.

41

Bilgi teorisi
Shannon bilgiyi bitlerle ifade ettigi icin, logaritmayi 2 tabaninda
kullanmistir ve enformasyon formiliinii asagidaki gibi vermistir.

I(x)=log sz) =—log P(x)

P(x), X olayinin gerceklesme olasiligini gosterir.

Shannon’a gore entropi, iletilen bir mesajin tasidigi
enformasyonun degeridir.

Shannon entropisi H, asadidaki gibi ifade edilir:
H(X)=E(I(X))= > P(x).I(x,)

1<i=n

:if’(xf)log; Pl :—iﬁlogzﬂ
i=1

i i=1
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Bilgi teorisi
Ornek

Bir paranin havaya atilmasi olayi rastsal X siirecini gostersin.
Yazi ve tura gelme olasiliklari esit oldugundan elde edilecek
enformasyon,

1
=log—=1log2=1
P(X) g0,5 J

olur. Bu olayin sonucunda 1 bitlik bilgi kazanilmistir.

1(X) = log

Entropi degeri ise 1 olarak bulunur.

H(X)=-3 p,log, p,

i=1

=—(0.5log, 0.5+0.51l0g, 0.5) =1

Bilgi teorisi
Ornek
Asadidaki 8 elemanh S kiimesi verilsin.
S = {evet, hayr, evet, hayir, hayir, hayir, hayw, hayir}

“evet” ve “hayir” igin olasilik,

p (evet) = % =0,25 p(hayir) = g =0,75

Entropi degeri,

1 .
H(S) = p(evet)lo + p(hayin)lo
(S) = p(evet)log, o(eved) p(hayir)log, o(hayin)
1 1
=0,25.log, —— +0,75.log, ——
9 0,25 i 9 0,75

=081




Odev

Bayes kuralinin clustering igin uygulamasini igeren SCI/E
dergilerinde yayinlanmig bir makale hakkinda édev hazirlayiniz.
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