
�����������	
���
������������	������
����	�����������
���������	����

������� ��!��"�����#$� ��

%����&�����
���
�

�����
� ����'(����
��)���*�'	'

+������

� ,����	��$$�

�-��������$(���

� .�������	���
��$�-��������$(���

� /���
���$����%��		��

� /���$���0����

� -(��1(��$(2-������-(�
�

,����	��$$�

�-��������$(���

� 3�	�� ��#������*�'����-������	�#��������
������
�
�4���������(�5��� ��
�(�6���"

� �����#��7���#������#�0����
� ��������
���������7�	���
������	��$$�

��(�5��� ��
�(�6���"

� ,�
���������7�	���-������	�#���
���,����	��$$�

�
-��������$(���2,�-���
�0���
� ����#� ���� ��
�����
���
�������#� *��'�
����
�����6��'����
����

�(�6���"

� ��������
���������6��(�5����������0���
� � ��
�#���"
� ���	�#����0���6�����	��������
���$����8����������#�
0����
� �������#����0��
��� �������7�����"

� 9���7��������6�����	���0���
����#����
���$���������
����
������6�����	�
� �$���$��������������"

,����	��$$�

�-��������$(���

� ��7���������6�����	�$�������:;���)�������
���8��������)������

�(�6���"�
� ,�-��0�7�����������#���
���$����8�������7	� ��0�7���"
� ������
���$����8�������
���������#�������<�� ��6�����	�$�������
��<�� ����6�������)����)�7�0����"

,����	��$$�

�-��������$(���

,�-���������
���$�����#'	�
�

,����	��$$�

�-��������$(���

,�-���������
���$�����#'	�
�

� j register numarasını gösterir (1 � j < k). (k register sayısıdır)
� T[i], i.tape alanının içeri�ini gösterir. Rj, j.register içeri�ini
gösterir.
� s � p programdaki instruction sıra numarasını gösterir.
� c do�al sayıdır.
� � bir sonra çalı�tırılacak instruction adresini saklar.
� Bütün instruction’lar aksi belirtilmedi�i sürece � program
sayacını bir artırır.
� Register 0 akümülator olarak kullanılır. Aritmetik ve lojik
i�lemlerde kullanılır.
� Makinenin çalı�ması bir halt instruction ile sonlandırılır.

,����	��$$�

�-��������$(���

Tanım:
RATM M = (k, �) �eklinde bir ikiliyle ifade edilir.

� k > 0 olmak üzere register sayısını gösterir.
� � = (�1, �2, ..., �p,) olmak üzere sonlu sayıda

instruction’a sahip programı gösterir. Burada her �i bir
instruction’ı gösterir.

� �p son instruction’dır ve halt oldu�u varsayılır.
� Program içinde ba�ka halt instruction’ları olabilir.

,����	��$$�

�-��������$(���

Tanım:
RATM için konfigürasyon k+2 tuple’dır ve
(�, R0, R1, ..., Rk-1, T) �eklinde ifade edilir.

� Burada � ∈ N program counter ve 0 ile p arasındadır.
� Halted konfigürasyonu için � sıfırdır.
� Rj , j.register’in �imdiki de�eridir. (0 � j < k)
� T, tape içeri�ini gösterir, sonlu sayıda pozitif tamsayı

çifti kümesidir ve (N – {0} x N – {0}) (i � 1) olmak üzere
(i, m) ∈ T �eklinde gösterilir. i.tape alanının içeri�i m
‘dir. (m > 0)

,����	��$$�

�-��������$(���

Tanım:
M = (k, �) bir RATM olsun. Bir konfigürasyon C=(�, R0, R1, ..., Rk-1, T)
bir adım sonra C8=(�8, R80, R1, ..., R8k-1, T8) konfigürasyonuna geçiyorsa
C�M C8��eklinde gösterilir.

� E�er �k instruction’ı read j �eklinde ise, (j < k) R0 register’ı tape
biriminin Rj ile gösterilen alanının de�erini alır. Tape alanı Rj register’ı
tarafından adreslenir. Böylece R80 = T(Rj) olur ve T(Rj) unique bir
de�ere sahiptir ve (Rj, m)∈ T dir. �8 = � + 1 olur.

� E�er �k instruction’ı add = c �eklinde ise, (c � 0) R80 = R0 + c ve �8 = � +
1 olur.

� E�er �k instruction’ı write j �eklinde ise, (j < k) �8 = � + 1 olur. Tape
biriminde Rj nin de�eriyle belirtilen sıradaki alana R0 yazılır.

� E�er �k instruction’ı jpos s �eklinde ise, (1 � s � p) e�er R0 > 0 ise �8=s
olur. E�er R0 � 0 ise �8 = � + 1 olur.

�*
M ili�kisi,�M ili�kisinin reflexive, transitive closure’udur.

,����	��$$�

�-��������$(���

Örnek (Çarpma):
M = (k, �) bir RATM için iki sayının çarpımını yapan mply
adında bir instruction ekleyelim.

� Register 0 x de�erine ve Register 1 y de�erine sahip
olsun.

� RATM halt durumuna ula�ınca Register 0 içinde x.y
de�eri olacaktır.

� Çarpma i�lemi ardarda toplama i�lemleriyle
yapılacaktır.

,����	��$$�

�-��������$(���

Örnek (Çarpma): (devam)

- Ba�langıçta R0 = x ve R1 = y.
- Sonuçta R0 = x.y dir.
- mply 1 i�lemi gerçekle�tirilir.
- Program her iterasyonda �2-�18 arasındaki i�lemleri yapar

k.iterasyonda
� Register 2 = x2k

� Register 3 = ����y / 2k����

� Register 1 = ����y / 2k-1����

� Register 4 = x .(y mod 2k)

z = y / 2wx y zx+x

y – z - z

w = w + x

x = x + x

y = z

,����	��$$�

�-��������$(���

Örnek: R1 := R2 + R1 – 1

1. load 1
2. add 2
3. sub = 1
4. store 1

Örnek: while x > 0 do x:= x – 3 (x = Register 1)
1. load 1
2. jzero 6
3. sub = 3
4. store 1
5. jump 1

,����	��$$�

�-��������$(���

Örnek (Çarpma): w := x . y de�erini hesaplar.
w:= 0
while y > 0 do

begin
z:= half(y)
if y – z – z 	 0 then w:= w + x
x:= x + x
y:= z

end
halt

y
 R1, x
 R2, z
 R3 ve w
 R4 göstermektedir.

,����	��$$�

�-��������$(���

Tanım: E, Σ ve {0, 1, …, |Σ |–1} arasında bir bijection olsun
(E(�) = 0). w = a1a2…an∈ (Σ - �)* giri�i için bir RATM M =
(k, �) nin ba�langıç konfigürasyonu (�, R0, …, Rk-1, T) olsun.

� Burada, � = 1, Rj = 0, ve T = {(1, E(a1)), (2, E(a2)), …,
(n, E(an))}

� M, w∈ Σ* giri�i için halt durumuna ula�tı�ında R0=1 ise bu
string’i kabul eder R0=0 ise bu string’i red eder.

,����	��$$�

�-��������$(���

Örnek: L = {anbncn : n � 0} dilini tanıyan RATM programını
yazınız.

acount:= bcount:= ccount:= 0, n:= 1
while T[n] = 1 do n:= n + 1, acount:= acount + 1
while T[n] = 2 do n:= n + 1, bcount:= bcount + 1
while T[n] = 3 do n:= n + 1, ccount:= ccount + 1
if acount = bcount = ccount and T[n] = 0 then accept

else reject

- E(a) = 1, E(b) = 2, E(c) = 3
- accept için “load =1, halt” ve reject için “load =0, halt”

yazılabilir.

.�������	���
��$�-��������$(���

Bir nondeterministic Turing makinesi (K, �, �, s, H) �eklinde
quintuple olarak ifade edilir.
� K, �, s, H standart Turing makineleriyle aynıdır.
� � geçi� ili�kisi ((K – H) x �) x ((K x (� ∪ {
,
})

kümesinin alt kümesidir.
� �*

M ili�kisi,�M ili�kisinin reflexive, transitive closure’udur.
� Bir konfigürasyon �M için birden fazla konfigürasyona

geçilebilir.
� M, w∈(Σ – {�, �})* giri�ini kabul eder e�er h∈H, a∈Σ ve

u, v∈Σ* için (s,��w)�*
M (h,��uav) ise.

/���
���$����%��		��

� Context-free gramerler terminal (�) ve nonterminallerin

(V-�) kümesi olan bir alfabeye sahiptir.
� A
 u (A∈V-�, ve u∈V*).
� Bir context-free gramer ba�langıç string S ile ba�layıp

sürekli sol taraftaki nonterminal yerine kuralların sa�
tarafını de�i�tirmektedir.

� CFG’de bütün kuralların sol tarafları bir nonterminale
sahiptir.

� Bir unrestricted gramerde ise kuralların sol tarafı en az bir
tane nonterminale sahip olmak kaydıyla bir string olabilir.

� Sonuçta üretilen string CFG’deki gibi sadece
terminallerden olu�abilir.

/���
���$����%��		��

Tanım: Bir unrestricted grammer G = (V, �, R, S) �eklinde
quadruple ile gösterilir.
� V bir alfabe
� � ⊆ V terminaller kümesi
� S ∈ V – � ba�langıç sembolü
� R kurallar kümesi, R ⊆ (V*(V – �)V*)xV*

� u
 v yazılabilir e�er (u, v)∈ R ise
� u �G v yazılabilir e�er w1,w2∈V* ,u8
 v8∈ R için

u = w1u8w2, v = w1v8w2 ise
� �*

G , �G geçi�lerinin reflexive, transitive, closure’udur.
� Bir w∈ � string’i G grameri tarafından üretilir e�er

S �*
G w ise

/���
���$����%��		��

Örnek: G = (V, �, R, S) grameri L = {anbncn:n � 1} dilini üretir.

V = {S, a, b, c, A, B, C, D, Ta, Tb, Tc} ve � = {a, b, c}
R = { S
ABCS, �lk iki kural (ABC)nTc üretir

S
Tc,
CA
AC, Sonraki üç kural A,B,C’leri sıralar
BA
AB, AnBnCnTc olu�ur
CB
BC,
CTc
Tcc, Di�er kurallar C yerine c, B yerine b,
CTc
Tbc, A yerine a yazar
BTb
Tbb,
BTb
Tab,
ATa
Taa,
Ta
e }

/���
���$����%��		��

Örnek: (devam) a2b2c2 string’inin üretili�i a�a�ıdadır.

R = { S
ABCS, S �G ABCS
S
Tc, �G ABCABCS �G ABACBCS
CA
AC, �G AABCBCS �G AABBCCS
BA
AB, �G AABBCCTc �G AABBCTcc
CB
BC, �G AABBTbcc �G AABTbbcc
CTc
Tcc, �G AATabbcc �G ATaabbcc
CTc
Tbc, �G Taaabbcc �G aabbcc
BTb
Tbb,
BTb
Tab,
ATa
Taa,
Ta
e }

/���$���0����

Church-Turing thesis
� Bu derste farklı hesaplama süreçleri için farklı

matematiksel modeller verilmi�tir.
� Özellikle bir dilin decide, semidecide edilmesi ve language

generator ve hesaplama fonksiyonları için modeller
geli�tirilmi�tir.

� Bir Turing makinesinin özelliklerinin artırılması (RATM)
aslında hesaplama kabiliyetini arttırmamaktadır.

� Bir hesaplama makinesi bir algoritmanın gerçekle�tirilmesi
için tasarlanır.

/���$���0����

Church-Turing thesis (devam)
� Bütün giri�ler için halt durumuna ula�an Turing makineleri

algoritmadır. Bu prensip Church-Turing thesis olarak
adlandırılır.

� Semidecide yapan Turing makineleri algoritma de�illerdir.
� Church-Turing tezinin do�rulu�u matematiksel olarak

ispatlanamamı�tır, yanlı�lı�ıda ispatlanamamı�tır.
� Church-Turing tezine göre, Turing makinesiyle

gerçekle�tirilemeyen hesaplamalar undecidable olarak
adlandırılır.

=���

� >��0��	������*�'�'��?"?"@��
� 5��@@:�

� >��0��	������*�'�'�?"A":���
� 5��@�@�

