
�����������	
���
������������	������
����	�����������
���������	����

������� ��!��"�����#$� ��

%����&�����
���
�

�����
� ����'(����
��)���*�'	'

+������

� ,����-�.������/�)��	����/�)�	
��0�
�����#����/�)�	
����%��		��
��,�%
������
��������
��,��
�

� 1��
��2���
�����
���������
�

,����-�.�����%��		��
�������������

�
������� �$��$�(���/��������������������
�����3�����#�/���
����"�

�
���'����$��$�(���/������������
�����3��������4�����"
�
���'����$��$�(������/���/�4��������4����� ���/���
������
���4���	� ��/�4����������/�������	�4�#���������
#��������#�
���������4��������"

� 5��������-6��

����/�������'����$�������#�#�/���������"

7���#!
a(a*∪ b*)b regular expression ile önce bir a üretilir.
Ardından iki durumdan birisine göre devam edilir. �stenen
sayıda a üretilir veya b üretilir. Son olarakta bir b
üretilir.

,����-�.�����%��		��
�������������

� ,����-�.8�������		��3������#���(��#��	�4�#���������'����/����"�
7���#!
� a(a*∪ b*)b regular expression ön kısım, orta kısım ve son kısım

olarak ayrı�tırılabilir.
� S dilde bir string ve M ise orta kısım olmak üzere

S � aMb �eklinde bir kural yazılabilir.
Burada M, a’lardan veya b’lerden olu�turulabilir.

M � A ve M � B yeni iki kural, A ve B dile ait stringlerdir.
A � e, A� aA ve B� e, B� bB

� a(a*∪ b*)b regular expression tarafından olu�turulan dil yukarıdaki
kurallarla olu�turulabilir.

aaab string’i a�a�ıdaki gibi olu�turulur;
S � aMb, S � aAb (M�A), S � aaAb (A�aA), S � aaab

,����-�.�����%��		��
�������������

� +������������)�4���	���4��	�0�
���$����)�4�$�#�

�	/���'�������� �6��������*�'���#������������#��
#�
�	�����/�#��	��"

� ��� '�����$����-�.8���������#�������������"�

� S, A, B, M ������	����0�a, b, e ���	����������#�
������������"

� 2'	�
�����3����
���$�����	��������������4�/����"

� +����������� �����	�
����� ����/���
�����������
����	�
�����������-6��

���3������ ����/���
�����������
����	�
����/����"

,����-�.�����%��		��
�������������

2���	!

� Bir context-free grammar G = (V, �, R, S) �eklinde
tanımlanır.
V alfabe (terminal ve nonterminaller)
� terminaller (� ⊆ V)
R kurallar (V – �) x V*

S ba�langıç sembolü (S ∈∈∈∈ (V – �))

• A∈∈∈∈ V – � ve u∈∈∈∈ V* için (A, u)∈∈∈∈ R ise A �G u yazabiliriz.
• u, v∈∈∈∈ V* için u �G v yazabiliriz sadece ve sadece x, y∈∈∈∈ V*

ve A∈∈∈∈ V – � ve u= xAy ve v= xv3�y ve A �G v3 ise

,����-�.�����%��		��
�������������

• �*
G , �G ili�kisinin reflexive, transitive, closure’udur.

• G grammar’i tarafından olu�turulan dil
L(G) = {w∈ �* : S �*

G w} �eklindedir.
• Kurallar uygulanarak dile ait tüm string’ler elde edilebilir.
• Olu�turulan L(G) dili context-free language olarak

adlandırılır.
• A �G u ve u �G v yerine A � u ve u � v yazılabilir.
• w0 �G w1 �G . . . �G wn derivation (türetme) olarak

adlandırılır. wn string’i w0’dan türetilmi�tir.
• w0 , . . . ,wn ∈ V* olabilir. n derivation length (türetme

uzunlu�u) olarak adlandırılır.

,����-�.�����%��		��
�������������

7���#!�
G = (V, �, R, S) grammar’i için
V = {S, a, b}, � ={a, b} ve R kümesi S � aSb ve S � e
olmak üzere iki tane kurala sahip olsun. Örnek bir derivation
a�a�ıdaki gibi olabilir:

S � aSb � aaSbb � aabb

�lk iki adımda S � aSb ve son olarak S � e uygulanmı�tır.

Olu�turulan dil L(G) = {anbn : n � 0} olmu�tur.

Bazı context-free diller regular de�ildir, ancak tüm regular
diller context-free dildir.

,����-�.�����%��		��
�������������

7���#!�
G = (W, �, R, S) grammar’i için
W = { S, A, N, V, P } ∪ � ,
� = { Jim, big, green, cheese, ate },
R = { P � N, S = sentence

P � AP, A = adjective
S� PVP, V = verb
A� big, N = noun
A� green, P = phrase
N� cheese,
N � Jim,
V� ate }

L(G) deki grammar olarak do�ru bazı string’ler a�a�ıdadır;
Jim ate cheese
big Jim ate green cheese
big cheese ate Jim

Bazı string’ler anlamsız olabilir;
big cheese ate green green big green big cheese
green Jim ate green big Jim

,����-�.�����%��		��
�������������

9 ���(�����/���/����
� ���6�����	��	������ ��� ����	�4�
/����
� ���6�����	����0� ���	�������)������/��	�
�������
#����#���������� 	�
������#��"
9 +���4	������������#��������
����/����#�6�����	��	��
�������� ���	�������)����)����#���������	�#������
$����-�.8�������		��3����#��������/����"
9 7�����#���6�����	������
 ���-������������6��
������	�
��
�4�	�
�������#�8� �������"
9 ����6�����	��	����������/����#�
�	������������
�-6��

���3�������8���������/����0�6�����	� �6�
���� ��
/��#� �6������$����-�.8�������		��3��������8�������8����
�����/����"

,����-�.�����%��		��
�������������

Örnek: Bütün programlama dillerindeki ortak bir kısmı olu�turan bir dil
tanımlayalım. Bu dil do�ru yazılmı� aritmetik ifadeleri göstersin.
id * (id * id + id) yazımı do�ru ancak * id + (ve + * id yanlı�tır.
(id de�i�ken adlarıdır)

G = (V, �, R, E)
V = {+, *, (,), id, T, F, E },
� = {+, *, (,), id},
R = { E � E + T, (R1) E = expression

E� T, (R2) T = term
T� T * F, (R3) F = factor
T� F, (R4)
F� (E), (R5)
F� id } (R6)

,����-�.�����%��		��
�������������

Örnek: (devam)
G grammar’i (id * id + id) * (id + id) string’ini a�a�ıdaki gibi olu�turur;

E � T (R2) � (E) * (id + id) (R5)
� T * F (R3) � (E + T) * (id + id) (R1)
� T * (E) (R5) � (E + F) * (id + id) (R4)
� T * (E + T) (R1) � (E + id) * (id + id) (R6)
� T * (T + T) (R2) � (T + id) * (id + id) (R2)
� T * (F + T) (R4) � (T * F + id) * (id + id) (R3)
� T * (id + T) (R6) � (F * F + id) * (id + id) (R4)
� T * (id + F) (R4) � (F * id + id) * (id + id) (R6)
� T * (id + id) (R6) � (id * id + id) * (id + id) (R6)
� F * (id + id) (R4)

,����-�.�����%��		��
�������������

Örnek: Düzgün da�ılımlı sa� ve sol parantezleri üreten bir
grammar olu�turalım.
G = (V, �, R, S)
V = { S, (,) },
� = { (,) },
R = { S � e,

S� SS
S� (S)}

A�a�ıdaki türetmeleri G grammar’i olu�turur;
S � SS � S(S) � S((S)) � S(()) � ()(())
S � SS � (S)S � ()S � ()(S) � ()(())

,����-�.�����%��		��
�������������

Örnek: Bir DFA M = (K, �, δ, s, F) tarafından tanınan regular dil

L(M), G(M) = (V, �, R, S) grammar’i tarafından olu�turulabilir.
Burada,

V = K ∪ � ,
S = s ,
R = { q � ap : δ(q, a) = p} ∪ {q � e : q ∈ F}

Nonterminaller otomatın durumları ve
a giri�i için yapılan q dan p ye geçi�
R içinde q � ap �eklinde bir
kural olarak alınır.

Yandaki otomat için olu�turulan kurallar;

S � aS, S � bA, A � bA, A � aB, B � aS, B � bA, B � e.

,����-�.�����%��		��
�������������

9 5���������	� ���$����-�.8�����������������"
9 ��$�#�/'�'�����������������$����-�.8����������"
9 5������������φ ���{a} /�
���$����-�.8�������������"�+������
��	� ������
���$��S � a4�#������#����� ��������������"
9 ,����-�.8����������������0�$��$�������������+������
����
�4��	����������#�6������"
9 ,����-�.8�����������6�
(��:�����	����������8������
�������"�1�
(��:�����	������8���������	��������
�������4�����	�4�4�#�����"
9 ����8���������	���/�
��� �6���#��6�
(��:�����	���
�����#��'4'�'�'�"

1��
��2���
�����
���������

9 %�$����-�.8�������		�����
��"�������		�������/���
�����3������4�����	�
��
8��#���4�#�����������/����"

9
�������6��������'������/���$����-�.8���������4�)���#��8��#���4�#��������� ���

�����3��'�����"

S � SS � S(S) � (S)(S) � (S)() � ()()
S � SS � (S)S � ()S � ()(S) � ()()

9 ;#���'���	�����4�)���#��4�#������*
������/����"

���4�#�������������������#�������������"�
9 ���������<��������/���������	�����
�	/���'�"
9 =�6��#����������
�����	��������������� �������/���
�	/���'�"
9 =�6��#����
������
�)��$��$��������������)��������4���
������'�������"

1��
��2���
�����
���������

Bir context-free grammar G = (V, �, R, S) için parse tree,
roots, leaves a�a�ıdaki gibi tanımlanır.

1. � a
Her a∈Σ için bu bir parse tree’dir. Tek node hem root hemde
yapraktır ve a olu�turur.

2.

A � e, R içinde bir kural ise bu bir parse tree’dir. A root ve e
yapraktır. Sadece e üretir.

1��
��2���
�����
���������

3.

Hepsi parse tree’dir. n � 1 için A1, …, An root ve y1, …, yn
üretilir. A � A1,…,An, R içinde kural ise a�a�ıdaki parse
tree’dir. Üretilen string y1…yn olur.

4. Bunların dı�ında hiçbir �ey parse tree de�ildir.

1��
��2���
�����
���������

Örnek: Aritmetik ifadeleri olu�turan grammar’in id * (id + id)
için olu�turdu�u parse tree a�a�ıdaki gibidir.

1��
��2���
�����
���������

Bir context-free grammar G = (V, �, R, S) için
D = x1 � x2 � . . . � xn ve D3 = x31 � x32 � . . . � x3n iki farklı türetmedir.
Burada xi , x3i ∈V* ve x1 , x31 ∈V –� ve xn , x3n∈ �*

�ki türetmede bir nonterminalden terminal string’leri türetilir.
D türetmesi D3 türetmesinden öncedir ve D � D3 �eklinde gösterilir e�er;
n > 2 için 1 < k < n olacak �ekilde bir k de�eri varsa ve;

1. Tüm i � k için xi = x3i
2. xk-1 = x3k-1 = uAvBw burada u, v, w ∈ V* ve A, B∈ V –�
3. xk = uyvBw, burada A � y ∈ R
4. x3k = uAvzw, burada B � z ∈ R
5. xk+1 = x3k+1 = uyvzw

En soldaki nonterminali de�i�tiren türetme di�erinden önce gelir.

1��
��2���
�����
���������

Örnek: Herhangi bir grammar için a�a�ıdaki üç türetmenin önceliklerini
çıkaralım.

D1 = S � SS � (S)S � ((S))S � (())S � (())(S) � (())()
D2 = S � SS � (S)S � ((S))S � ((S))(S) � (())(S) � (())()
D3 = S � SS � (S)S � ((S))S � ((S))(S) � ((S))() � (())()

Burada D1 �D2 ve D2 �D3 olur. D1 �D3 olamaz çünkü birden fazla
ara string’te farklılık vardır. Bütün türetmeler aynı parse tree’ye sahiptir.

1��
��2���
�����
���������

Örnek: devam
D4 = S � SS � (S)S � (S)(S) � ((S))(S) � (())(S) � (())()
D5 = S � SS � (S)S � (S)(S) � ((S))(S) � ((S))() � (())()
D6 = S � SS � (S)S � (S)(S) � (S)() � ((S))() � (())()
D7 = S � SS � S(S) � (S)(S) � ((S))(S) � (())(S) � (())()
D8 = S � SS � S(S) � (S)(S) � ((S))(S) � ((S))() � (())()
D9 = S � SS � S(S) � (S)(S) � (S)() � ((S))() � (())()
D10 = S � SS � S(S) � S() � (S)() � ((S))() � (())()

Buradaki tüm öncelik ili�kileri a�a�ıdaki �ekille gösterilebilir.

1��
��2���
�����
���������

Bir parse tree üzerinde leftmost derivation ve rightmost
derivation elde edilebilir.

Leftmost derivation için a�acın root node’undan ba�lanır ve
sürekli ensoldaki nonterminal de�i�tirilir.

Rightmost derivation için a�acın root node’undan ba�lanır ve
sürekli ensa�daki nonterminal de�i�tirilir. Önceki örnekte D1
leftmost D10 ise rightmost derivation yapar.

1��
��2���
�����
���������

Leftmost derivation için x �L y ve rightmost derivation için
x �R y kullanılır.

x �L y yazabiliriz e�er sadece ve sadece x = wA�, y = w	�,
ise ve burada w∈ �* ve 	, � ∈ V* ve A∈ V –� ve A � 	
kuralı grammar’de varsa.

x1 �
L x2 �

L . . . �L xn tüm leftmost türetme sırasını ifade
eder.

7���

� 1��/��	������*�'�'���">">/0��">">$0��">">$��
� 8��>?��

� 1��/��	������*�'�'�">"?0��">"���
� 8��>?��

� 1��/��	������*�'�'�">"@��
� 8��>?>�

� 1��/��	������*�'�'�"?"A��
� 8��>?B�

