
�����������	
���
������������	������
����	�����������
���������	����

������� ��!��"�����#$� ��

%����&�����
���
�

�����
� ����'(����
��)���*�'	'

+������

� ,����-�.���������/��.,����-�.�������������


� 
����	���
	�����0��
���

� 1�2.
�3��0��
���

� �����	.42�0��
���



,����-�.���������/��.,����-���������������


� ,����-�.5�������������'�����	�
�������$����-�.5����
���		��6����#�������	�#�����"

� ,����-�.5������������������	�
�������2�
(��3��
����	����#�������	�#�����"

� ,����-�.5�������		��6���'�����)����������� ���7���
2�
(��3������	�������8������7����"

� ����������$����-�.5������ �����.$����-�.5��������)����
7������	�#������ *���	����������"

� ,��
����2��2�����
����2�	2������		���#��5��#���
 *���	������#����������������������)����7��
#��������7����"

,����-�.���������/��.,����-���������������


Theorem: Context-free diller union, concatenation ve Kleene 
star i�lemleri için kapalıdır.
Proof: G1 = (V1, �1, R1, S1) ve G2 = (V2, �2, R2, S2) iki farklı 
grammar olsun. Bu iki grammar için nonterminal kümeleri 
disjoint olsun. (V1  – �1) ∩ (V2  – �2) = φ
Union
S yeni bir sembol ve G = (V1∪ V2 ∪ {S}, �1 ∪ �2 , R, S) ve 
R = R1∪ R2 ∪ {S � S1, S � S2} olsun. Amaç L(G) = 
L(G1)∪ L(G2) oldu�unu göstermektir. Herhangi bir w 
string’i için ( S � S1, S � S2 oldu�undan) S�*

G w olur e�er 
sadece ve sadece S1 �

*
G w veya S2 �

*
G w ise.

Nonterminaller kümeleri disjoint oldu�u için ilk kuralla S1
veya S2’ye geçildikten sonra di�erine tekrar dönülmez.



,����-�.���������/��.,����-���������������


Proof: (devam)
Concatenation
G = (V1∪ V2 ∪ {S}, �1 ∪ �2 , R1∪ R2∪ {S � S1S2} , S) 
�eklinde tanımlanan bir grammar‘ le L(G1)L(G2) dili
olu�turulabilir.

Birinci grammar’deki nonterminaller (S1 içindeki) 
terminallere dönü�türüldükten sonra ikinci grammar’deki 
nonterminaller (S2 içindeki)  terminallere dönü�türülür.

,����-�.���������/��.,����-���������������


Proof: (devam)
Kleene star
G = (V1 ∪ {S}, �1 , R1 ∪ {S � e, S � SS1} , S) �eklinde 
tanımlanan bir grammar‘ le L(G1)* dili olu�turulabilir.

S � SS1 kuralının tekrarı ile dildeki kuralın (S � S1) 
tekrarı istenen sayıda yapılabilir. 



,����-�.���������/��.,����-���������������


Tanımlar:
G = (V, �, R, S) bir context-free grammar olsun. G’nin fanout 
de�eri φ(G) olarak gösterilir ve R kurallar kümesinde sa� 
kısmı en uzun olan kuralın sa� kısmındaki sembol sayısıdır. 

Bir parse tree üzerinde path root node ile yaprak node 
arasında farklı node’lardan geçilerek elde edilen sıradır. 

Yolun length de�eri üzerindeki çizgi sayısıdır. 

Bir parse tree için height en uzun yolun length de�eridir. 

,����-�.���������/��.,����-���������������


Lemma: G grammar’ine ait h height de�erine sahip bir parse tree’nin 
üretti�i string’in uzunlu�u en çok φ(G)h olabilir. 
Proof: h = 1 için parse tree grammar içinde bir kuraldır (2.durum). 
Ençok φ(G)h=φ(G) uzunlu�unda string üretilir. (S�abc, S�abcabcabc) 
� h � 1 olan her h de�eri için yeni bir root olu�ur h-1 yüksekli�indeki 
parse tree’leri birbirine ba�lar. 
� h+1 için yüksekli�i ençok h olan enfazla φ(G) adet parse tree birbirine 
ba�lanır (3.durum). Her parse tree φ(G)h uzunlu�unda string olu�turur 
ve toplam en çok φ(G)h+1 uzunlu�unda string olu�ur.
R1 = (A � ababa, A � aba, ...),  
R2 = (S �AAA, A � ababa, ...)

h= 1



,����-�.���������/��.,����-���������������


Pumping Theorem: G = (V, �, R, S) bir CFG olsun. Uzunlu�u φ(G)|V-�|

dan büyük her w∈ L(G) string’i w = uvxyz �eklinde yazılabilir. 
Tüm n � 0 de�erleri için v veya y den birisi bo� olmamak kaydıyla 
uvnxynz ∈∈∈∈ L(G) olur. Bunu sa�lamayan non-context-free dildir. 

Örnek: L = {anbncn : n � 0} dili non-context-free’dir. Bir CFG G = (V, 
�, R, S) için L = L(G) oldu�unu dü�ünelim. w = anbncn dile ait olmalıdır 
ve w = uvxyz �eklinde gösterilebilmelidir. Burada v veya y’ den en az 
birisi bo� olamaz ve tüm n � 0 için uvnxynz∈ L(G) olmalıdır. 

• E�er vy string’i a, b ve c’lerin üçünüde içerirse v ve y’den birisi en az 
ikisini (ab, bc) içerir. uv2xy2z string’i a,b,c ‘lerin sırasını bozar. b’lerden 
sonra a veya c’lerden sonra b gelir. 
• E�er vy string’i a, b ve c’lerin bir kısmını içerirse uv2xy2z string’i e�it 
olmayan sayıda a, b ve c’ler üretir. 

,����-�.���������/��.,����-���������������


Theorem: Context-free diller complementation ve intersection için kapalı 
de�ildir. 

Proof: {anbncm : m,n � 0} ile {ambncn : m,n � 0} dilleri context-free’dir. 

Bu iki dilin kesi�imi {anbncn : n � 0}  olur. Bu dil non-context-free’dir. 

oldu�u için e�er complementation için kapalı 
olsaydı kesi�im içinde kapalı olurdu.

2121 LLLL ∪=∩




����	���
	�����0��
���

� ,����-�.5�����������2�����	��	�������������
 ���-�
����������� �)���7���8�#�����#�������	�#�����"�

� 0�����	��	����������������8�����	�8�7���$�	2�����7���
2��
������8���	�#�����������"

� 0��
�����������7���
�����6����������������������2���	���)����
7�������"�
�������
����
�����������7���2��
�������
���8�����"�

� ,�	2�������(��
�����2��
������6 ���

�	7� ��������7��
��	���7��������#��2�����	���*�'8�'�'�"

� ,�	2����������2��
������8���	�������7�8������
��������
2�
(��3������	������������	�#�����"

� ��$�#�0
�6������������	���
��$6������������	���
��$�
�����#�����8�����	�
������������"


����	���
	�����0��
���

� Bir pushdown automaton deterministic’tir (DPDA) e�er 
herbir configuration için kendisini izleyen sadece bir 
configuration varsa. 

� �ki transition relation ((p, a, �), (q, �)) ve ((p, a6, �6), (q6, 
�6)) compatible’dır e�er ikisinide kabul eden bir durum 
varsa.

� E�er M pushdown automata deterministic ise iki farklı 
compatible geçi� olamaz.




����	���
	�����0��
���

Örnek: L = {wcwR : w ∈ {a, b}*}  dilini kabul eden a�a�ıdaki 
PDA deterministic’tir

M = ( K, �, �, 	, s, F), K = {s, f}, � = {a, b, c}, � = {a, b}, F = {f}
	 toplam 5 adet geçi� ili�kisine sahip olsun;

1. ((s, a, e), (s, a)) 
2. ((s, b, e), (s, b)) 
3. ((s, c, e), (f, e)) 
4. ((f, a, a), (f, e)) 
5. ((f, b, b), (f, e)) 

Herbir durum ve giri� sembolü için sadece bir geçi� vardır.


����	���
	�����0��
���

Örnek: L = {wwR : w ∈ {a, b}*}  dilini kabul eden a�a�ıdaki 
PDA nondeterministic’tir

M = ( K, �, �, 	, s, F), K = {s, f}, � = {a, b}, � = {a, b}, F = {f}
	 toplam 5 adet geçi� ili�kisine sahip olsun;

1. ((s, a, e), (s, a)) 
2. ((s, b, e), (s, b)) 
3. ((s, e, e), (f, e)) 
4. ((f, a, a), (f, e)) 
5. ((f, b, b), (f, e)) 

Transition 3, 1 ve 2 ile compatible’dır. Ayrıca string’in orta noktası 
tahmin edilmektedir. 




����	���
	�����0��
���

� Deterministic context-free diller DPDA tarafından kabul 
edilir. 

� Deterministic context-free diller giri� string’inin sonunu 
gösterebilmelidirler. 

� L ⊆ �* deterministic context-free dildir e�er DPDA M 
için L$ = L(M) ise. 

� Burada $ i�areti string’in sonunu göstermektedir ve $∉ �

dir. 
� $ i�areti tüm string’lere otomatik olarak eklenmi�tir.  

1�2.
�3��0��
���
Örnek : L = {anbn : n � 0 } context-free dildir ve G = ({a, b, S}, {a, b}, R, S) grammar’i 

tarafından üretilir. R = (S�e, S�aSb) kurallarına sahiptir. Önce bir PDA 
olu�turalım. 

M1 = ({p, q}, {a, b}, {a, b, S}, 	1, p, {q}). 
	1 ={((p, e, e), (q, S)), ((q, e, S), (q, aSb)), ((q, e, S), (q, e)), 

((q, a, a), (q, e)), ((q, b, b), (q, e))} 
M1 otomatı deterministic hale dönü�türülebilir ve L$ dilini kabul eder.

M2=({p, q, qa, qb, q$}, {a, b}, {a, b, S}, 	2, p, {q$})
	2 ={((p, e, e), (q, S)), (1) ((qb, e, b), (q, e)), (5)

((q, a, e), (qa, e)), (2) ((q, $, e), (q$, e)), (6)
((qa, e, a), (q, e)), (3) ((qa, e, S), (qa, aSb)), (7)
((q, b, e), (qb, e)), (4) ((qb, e, S), (qb, e)) } (8)

M2 q durumundayken stack’ta i�lem yapmadan giri�ten bir sembol okur ve qa, qb veya 
q$ durumlarından birisine geçer. Böylece compatible iki geçi� olan ((q, e, S), (q, 
aSb)) ve ((q, e, S), (q, e)) geçi�lerini ayırır.



1�2.
�3��0��
���
Örnek : (devam) DPDA  M2 ’nin ab$ için geçi�leri a�a�ıda verilmi�tir. 

.

1�2.
�3��0��
���

Örnek : (devam)
� M2 , L = {anbn} diline ait string’leri tanımak için deterministic olarak çalı�ır.
� M2 giri� string’ini leftmost derivation ile üretir. 
� Örnekteki 3. ve 6. adımlar parse tree’nin olu�turuldu�u adımlardır.

� M2 string’in dile ait olup olmadı�ını bulur, aynı anda parse tree olu�turur. 
� Parse tree compiler’ların kullandı�ı parser’larda assembly dilinde program 

olu�turmak için kullanılmaktadır.
� M2 top-down parser’dır, parse tree top-down ve left-to-right yakla�ımıyla olu�ur. 



1�2.
�3��0��
���

Örnek: Daha önce do�ru yazılmı� aritmetik ifadeler için olu�turulmu� 
grammar’e F� (E), �eklinde bir kural ekleyelim. Bu yeni kural fonksiyon 
ça�ırmalarını sa�lar. (Örn.: sqrt(x * x + 1) )

Bu grammar için bir top-down parser olu�turalım. 

M3 = ({p, q}, �, �, 	, p, {q}),
� = {(, ), +, *, id} ,
� = � ∪ {E, T, F}
	=0. ((p, e, e), (q, E))

1. ((q, e, E), (q, E+T))
2. ((q, e, E), (q, T))
3. ((q, e, T), (q, T*F))
4. ((q, e, T), (q, F))
5. ((q, e, F), (q, (E)))
6. ((q, e, F), (q, id))
7. ((q, e, F), (q, id(E)))

ve son olarak tüm a ∈ � için ((q, a, a), (q, e)) ∈ 	 olsun. 

1�2.
�3��0��
���
Örnek: (devam) 
• Bu otomatta nondeterminism 1-2, 3-4 ve 5-6-7 kurallarından 

kaynaklanmaktadır. 
Transition 6 ve 7: M3 otomatının (q, id, F) konfigürasyonunda oldu�unu 

dü�ünelim. M3 bu durumda 5, 6 veya 7 geçi�lerinden birisini seçebilir. Input 
string’teki bir sonraki sembole (id) bakarak 5 elenir. Transition 5’te (()bir 
sonraki semboldür. Ancak bir sonraki sembol 6 ve 7 için aynıdır (id). 

• Bu problem sa� tarafı aynı olmasada ilk sembolü aynı olan F� id ve 
F� id(E) kurallarından kaynaklanmaktadır.

• F� id ve F� id(E) kurallarının yerine F� idA, A� e ve A� (E) 
kuralları konularak giderilebilir. Burada A yeni bir nonterminaldir. 

• Transition 6 ve 7 yerine a�a�ıdaki kurallar konur; 
66. ((q, e, F), (q, idA))
76. ((q, e, A), (q, e))
86. ((q, e, A), (q, (E)))

Geçi�ler (q, id(id), F)�M  (q, id(id), idA)�M  (q, (id), A)�M  (q, (id), (E))�M  ...  olur.



1�2.
�3��0��
���

Nondeterminismi ortadan kaldırmak için kullanılan bu 
teknik left factoring olarak adlandırılır. A�a�ıdaki kural ile 
özetlenebilir;

Heuristic Rule 1: E�er A�
�1, A�
�2, . . . , A�
�n �eklinde 
kurallar varsa ve 
 � e ve n � 2 ise, bu kurallar A�
A6, A6��i

kurallarıyla de�i�tirilir. A6 yeni nonterminaldir.

1�2.
�3��0��
���

Transition 1 ve 2: E�er M3 otomatı bir sonraki input sembol için id görürse, ve 
stack’taki E ise birkaç farklı i�lem yapılabilir. Transition 2 yapılarak E 
yerine T yazılır. Giri�in sadece id olması durumunda bu geçerlidir. 
Transition 1 kullanılarak E yerine E + T yazılır. Giri�in id + id olması 
durumunda geçerlidir. Transition 1 iki defa ve Transition 1 bir defa 
kullanılabilir. Giri�in id + id + id olması durumunda geçerlidir. Burada sa� 
taraftaki i�lemin kaç defa tekrarlanaca�ının sınırı belli de�ildir. 

• Bu olay left recursion olarak adlandırılır. 
• Bu problem E� E + T kuralından kaynaklanmaktadır. Soldaki nonterminal 

sa�daki ilk semboldür. 
• E� E + T  ve E� T kuralları yerine E� TE6, E6� +TE6�ve E6� e 

kuralları konularak giderilebilir. Burada E6 yeni bir nonterminaldir. 
• Aynı i�lem T� T * F, T� F içinde yapılır. T� FT6, T6� *FT6�ve T6� e 



1�2.
�3��0��
���

Örnekteki grammar’in son �ekli a�a�ıdaki gibi olur.

G6 = (V6, �, R6, E) ,
V6�= � ∪ {E, E6, T, T6, F, A} ,
R  =

1. E� TE6
2. E6� +TE6�
3. E6� e 
4. T� FT6
5. T6� *FT6
6. T6� e
7. F � (E)
8. F � idA
9. A � e
10. A � (E)

1�2.
�3��0��
���

Nondeterminismi ortadan kaldırmak için kullanılan bu left 
recursion tekni�i a�a�ıdaki kural ile özetlenebilir;

Heuristic Rule 2: E�er A�A
1,..., A�A
n ve A��1,...,A��m
�eklinde kurallar varsa ve �i ler A ile ba�lamıyorsa ve n > 0 ise, 
bu kurallar A��1A6,..., A��mA6�ve A6�
1A6,..., A6�
nA6�ve 
A6�e kurallarıyla de�i�tirilir. A6 yeni nonterminaldir.



1�2.
�3��0��
���

Örnek: Önceki grammar’i tanıyan DPDA M4 = L(G6)$ olu�turalım.
M4 = (K, � ∪ {$}, V6, 	, p, {q$}),
K = {p, q, qid, q+, q*, q), q(, q$} ,
	=((p, e, e), (q, E))

((q, a, e), (qa, e)) tüm a ∈ � ∪ { $ }
((qa, e, a), (q, e)) tüm a ∈ �

((qa, e, E), (qa, TE6)) tüm a ∈ � ∪ { $ }
((q+, e, E6), (q+, +TE6))
((qa, e, E6), (qa, e)) tüm a ∈ { ), $ }
((qa, e, T), (qa, FT6)) tüm a ∈ � ∪ { $ }
((q*, e, T6), (q*, *FT6))
((qa, e, T6), (qa, e)) tüm a ∈ { +, ), $ }
((q(, e, F), (q(, (E)))
((qid, e, F), (qid, idA))
((q(, e, A), (q(, (E)))
((qa, e, A), (qa, e)) tüm a ∈ { +, *, ), $ }

M4 deterministic pushdown automaton’u G� grammar’i için bir parser’dır.

1�2.
�3��0��
���
Örnek: (devam) id * (id)$ giri� string’i a�a�ıdaki tabloda görüldü�ü gibi kabul edilir. 



1�2.
�3��0��
���
Örnek: (devam)

1�2.
�3��0��
���

Örnek: (devam) G6 deki kurallar ile stack üzerinde nonterminal de�i�tirilen adımlar 
tabloda son sütunda numaralandırılmı�tır. Sırayla bu kurallar uygulandı�ında 
id*(id)$ string’inin leftmost derivation’ı elde edilir. 

Olu�turulan parse yandadır.    
E � TE6�

� FT6E6�
� idT6E6�
� id *FT6E6�
� id *(E)T6E6�
� id *(TE6)T6E6
� id *(FT6E6)T6E6�
� id *(idT6E6)T6E6�
� id *(idE6)T6E6�
� id *(id)T6E6
� id *(id)E6�
� id *(id)

Parse tree top-down ve 
left-first olarak olu�mu�tur.



�����	.42�0��
���

• Context-free dillerin parse edilmesinde en iyi yol yoktur. 
Farklı grammar’ler için farklı yöntemler vardır.

• Farklı bir yakla�ımda automaton ilk önce giri�i okur ve 
derivation sonra yapılır.

• Sonuçta parse tree yapraklardan root node’a do�ru 
gerçekle�ir.

• Bu yöntemler bottom-up olarak adlandırılırlar.

�����	.42�0��
���

G = (V, �, R, S) bir CFG için M = (K, �, �, 	, p, F) bottom-up 
pushdown automaton’u olu�turalım. Burada K = {p, q}, � = V, 
F = {q} ve 	 a�a�ıdaki geçi�lere sahip olsun.

1. ((p, a, e), (p, a)) tüm a ∈ � için
2. ((p, a, 
R), (p, A)) tüm A � 
 ∈ R için
3. ((p, e, S), (q, e))

Her transition bir transition sınıfını göstermektedir. Transition 1 
input sembolleri stack’a aktarır. Transition 2 stack’ta 
kuralların sa� kısmının yerine sol kısmını de�i�tirir. Kuralların 
sa� kısmı ters sırada bulunmalıdır. Transition 3 ise sonuç 
durumuna geçerek çalı�mayı sonlandırmayı sa�lar.



�����	.42�0��
���

Örnek: Aritmetik deyimleri üreten gramer için bir bottom-up pushdown 
automaton olu�turalım. Kurallar a�a�ıdaki gibi olsun.
E � E + T (R1) E � T (R2)
T � T * F (R3) T � F (R4)
F � (E) (R5) F � id (R6)

M pushdown automaton’u için a�a�ıdaki geçi�ler olu�turulur.
(p, a, e), (p, a) tüm a ∈ � için (	0)
(p, e, T + E), (p, E) (	1)
(p, e, T), (p, E) (	2)
(p, e, F * T), (p, T) (	3)
(p, e, F), (p, T) (	4)
(p, e, )E(), (p, F) (	5)
(p, e, id), (p, F) (	6)
(p, e, E), (q, e) (	7)

�����	.42�0��
���

Örnek: (devam) id * (id) a�a�ıdaki gibi kabul edilir.



�����	.42�0��
���

Örnek: (devam)
• M otomatı deterministic de�ildir. Çünkü 	0 di�er tüm 

geçi�lerle (	1 - 	8) compatible’dir.
• Herhangi bir anda M bir terminali stack’a aktarabilir (1, 4, 

5, 6 ve 10 adımlar) veya stack’taki birkaç sembolü bir 
kuralın sa� kısmı olarak elde edebilir. 

• Kuralın sa� kısmı olarak görülen string sol kısımla 
de�i�tirilerek indirgenir(	1 – 	6).

• �ndirgeme yapılan adımlar ters sırada alınırsa rightmost 
derivation yapılır.

�����	.42�0��
���

Örnek: (devam)
�ndirgeme yapılan adımların ters sırada alınmasıyla elde 

edilen rightmost derivation a�a�ıdaki gibidir.

E � T
� T * F
� T * (E)
� T * (T)
� T * (F)
� T * (id)
� F * (id)
� id * (id)



9���

� 0��7��	������*�'�'���"�":$��
� 5��;<=�

� 0��7��	������*�'�'���"�"����
� 5��;<=�

� 0��7��	������*�'�'���"�";<�>��"�";<$��
� 5��;<?�

� 0��7��	������*�'�'���"@";�>��"@";7��
� 5��;@���


