BM 305 Bicimsel Diller ve Otomatlar
(Formal Languages and Automata)

Hazirlayan: M.Ali Akcayol
Gazi Universitesi
Bilgisayar Miihendisligi Bolumii

i Konular

Context-Free and Non-Context-Free Languages
Determinism and Parsing

Top-Down Parsing

Bottom-Up Parsing

i Context-Free and Non-Context Free Languages

= Context-free dillerin Uretilmesi icin context-free
grammar’ler kullaniimaktadir.

= Context-free dillerin taninmasi icin pushdown
automata kullaniimaktadir.

= Context-free grammar’in Urettigi dili taniyan bir
pushdown automata olusturulabilir.

= Bir dilin context-free veya non-context-free oldugunu
belirlemek icin yontemler vardir.

= Closure properties ve pumping lemma iki farkli
yontem olarak regular dillerde oldugu gibi
kullanilabilir.

i Context-Free and Non-Context Free Languages

Theorem: Context-free diller union, concatenation ve Kleene
star islemleri icin kapalidtr.

grammar olsun. Bu iki grammar icin nonterminal kiimeleri
disjoint olsun. (V, = 2,) N(V, =2)) = ¢

Union

S yeni bir sembolve G = (V,uV,U{S}, 2, 2,, R S)ve
R=R,UR,U{S— S, S— S,}olsun. Amag¢ L(G) =
L(G,;)U L(G,) oldugunu gostermektir. Herhangi bir w
string’iicin (S — S, S — S, oldugundan) S =";w olur eger
sadece ve sadece S; =", w veya S,=";w ise.
Nonterminaller kiimeleri disjoint oldugu icin ilk kuralla S,
veya S,’ye gecildikten sonra digerine tekrar doniilmez.

i Context-Free and Non-Context Free Languages

Proof: (devam)

Concatenation

G=(V,uV,u(S} 2, ul,, RRUR,LU[S — S,S,},S)
seklinde tamimlanan bir grammar‘ le L(G,;)L(G,) dili
olusturulabilir.

Birinci grammar’deki nonterminaller (S, icindeki)
terminallere doniistiiriildiikten sonra ikinci grammar’deki
nonterminaller (S, icindeki) terminallere doniistiiriiliir.

i Context-Free and Non-Context Free Languages
Proof: (devam)

Kleene star

G=(V,u{S})2,,R,U{S—e S—SS,},S)seklinde

tamimlanan bir grammar* le L(G,)" dili olusturulabilir.

S — 88, kuralimin tekrari ile dildeki kuralin (S — S))
tekrari istenen sayida yapilabilir.

i Context-Free and Non-Context Free Languages

Tanimlar:

G =(V, 2, R, S) bir context-free grammar olsun. G’nin fanout
degeri)/ G) olarak gosterilir ve R kurallar kiimesinde sag
kismi en uzun olan kuralin sag kismundaki sembol sayisidir.

Bir parse tree iizerinde path root node ile yaprak node
arasinda farkli node’lardan gecilerek elde edilen siradir.

Yolun length degeri iizerindeki ¢izgi sayisidur.

Bir parse tree icin height en uzun yolun length degeridir.

i Context-Free and Non-Context Free Languages

Lemma: G grammar’ine ait h height degerine sahip bir parse tree’nin
iirettigi string’in uzunlugu en ¢cok ¢ G)" olabilir.

Proof: h = 1 icin parse tree grammar icinde bir kuraldir (2.durum).
Encok §G)'=dG) uzunlugunda string iiretilir. (S—abc, S—abcabcabc)
m h > 1 olan her h degeri icin yeni bir root olugur h-1 yiiksekligindeki
parse tree’leri birbirine baglar.

» h+1 icin yiiksekligi encok h olan enfazla & G) adet parse tree birbirine
baglanir (3.durum). Her parse tree @ G)" uzunlugunda string olusturur
ve toplam en ¢ok §G)'*' uzunlugunda string olusur. S

R, = (A — ababa, A — aba, .)

R, = (S -AAA, A — ababa, .

- A

ababa ababa ababa

i Context-Free and Non-Context Free Languages

Pumping Theorem: G = (V, 2, R, S) bir CFG olsun. Uzunlugu ¢(G)"-
dan biiyiik her we L(G) string’i w = uvxyz seklinde yazilabilir.

Tiim n > 0 degerleri icin v veya y den birisi bog olmamak kaydiyla
uv'xy"z € L(G) olur. Bunu saglamayan non-context-free dildir.

Ornek: L = {a"b"c" : n >0} dili non-context-free’dir. Bir CFG G = (V,
2, R, S) icin L = L(G) oldugunu diisiinelim. w = a"b"c" dile ait olmalidir
ve w = uvxyz seklinde gosterilebilmelidir. Burada v veya y’ den en az
birisi bog olamaz ve tiim n > 0 icin uv'xy"ze L(G) olmalidir.

» Eger vy string’i a, b ve c’lerin iiciiniide icerirse v ve y’den birisi en az
ikisini (ab, bc) igerir. uv’xy?z string’i a,b,c ‘lerin sirasini bozar. b’lerden
sonra a veya c’lerden sonra b gelir.

 Eger vy string’i a, b ve c¢’lerin bir kismuni icerirse uvxy’z string’i esit
olmayan sayida a, b ve c’ler iiretir.

i Context-Free and Non-Context Free Languages

Theorem: Context-free diller complementation ve intersection icin kapali
degildir.

Proof: {a'b"c™ : m,n >0} ile {a"b"c" : m,n > 0} dilleri context-free’dir.

Bu iki dilin kesisimi {a"b"c" : n >0} olur. Bu dil non-context-free’dir.

LNL, =L_1 UL_2 oldugu icin eger complementation icin kapali
olsaydt kesigim icinde kapali olurdu.

i Determinism and Parsing

= Context-free diller programlama dillerinin syntax
analizinde yogun bir sekilde kullaniimaktadir.

= Programlama dili icin gelistirilmis bir compiler bir
parser olusturmak zorundadir.

= Parser girilen bir string’in ilgili dile ait olup olmadigini
belirler. Dile aitse o string icin bir parse tree
olusturur.

= Compiler daha sonra parse tree'yi assembly dili gibi
temel bir dildeki programa doénustardr.

= Compiler icin parser olusturmada en basarili sonuclar
pushdown automata ile alinmaktadir.

= Ancak PDA’lar nondeterministic'tir ve deterministic
olarak calistirimasi zorunludur.

i Determinism and Parsing

» Bir pushdown automaton deterministic’'tir (DPDA) eger
herbir configuration icin kendisini izleyen sadece bir
configuration varsa.

= [ki transition relation ((p, a, p), (g, v)) ve ((p, a’, B), (4",
y')) compatible’dir eger ikisinide kabul eden bir durum
varsa.

n Eger M pushdown automata deterministic ise iki farkl
compatible gecis olamaz.

i Determinism and Parsing

Ornek: L = {fwewR : w € {a, b}*} dilini kabul eden asagidaki
PDA deterministic’tir

M=(K X 14,5 F),K={sf}, Y={a b, c}, "= {a, b}, F = {f}
A toplam 5 adet geciy iliskisine sahip olsun;

1.((s, a, e), (s, a))

2.((s, b, e), (s, b))

3.((s, c, e), (f, e)

4.((f. a, a), (f. €))

5.((f, b, D), (f. €)

Herbir durum ve giris sembolii icin sadece bir gecis vardir.

i Determinism and Parsing

Ornek: L = fwwR : w € {a, b}*} dilini kabul eden asagidaki
PDA nondeterministic’tir

M=(K XTI 45 F),K={sfl, X={a b}, I'={a b}, F = {f}
A toplam 5 adet geciy iliskisine sahip olsun;

1.((s, a, e), (s, a))

2.((s, b, e), (s, b))

3.((s, e, e), (f, e)

4.((f. a, a), (f. €))

5.((£,0,b) (f.)

Transition 3, 1 ve 2 ile compatible’dir. Ayrica string’in orta noktast
tahmin edilmektedir.

i Determinism and Parsing

m Deterministic context-free diller DPDA tarafindan kabul
edilir.

m Deterministic context-free diller giris string’inin sonunu
gosterebilmelidirler.

n L c)7 deterministic context-free dildir eser DPDA M
icin L$ = L(M) ise.

» Burada $ isareti string’in sonunu gostermektedir ve $& >
dir.

$ isareti tiim string’lere otomatik olarak eklenmistir.

Top-Down Parsing

Ornek : L = {a"b" : n >0 } context-free dildir ve G = ({a, b, S}, {a, b}, R, S) grammar’i
tarafindan tiretilir. R = (S—e, S—aSb) kurallarina sahiptir. Once bir PDA
olusturalim.

M] = ({p’ q}’ {Ll, b}r I,a) b) S}’ AI’ b {q})
A, ={((p, e, e), (¢, S)), ((q, e, S), (g, aSb)), ((q, e, S), (q, e)),
(g, a, a), (g, e)), (g, b, b), (g, e))}

M, otomati deterministic hale doniistiiriilebilir ve L$ dilini kabul eder.

M2=({p’ q, qa’ qh’ q$}’ {a’ b}r {Cl, br S}r AZ’ P {Q$})

A,={((p. e.e). (¢, 5), (1) (g, e b), (g, €)), (5)
(g a e) (4, €), (2) ((q. 5. e). (q5 €)), (6)
(40 € a) (g, €), (3) (4 € S). (4, aSh)), (7)

((q. b e) (qp €), (4) ((qp e S), (q, e) } (8)

M, q durumundayken stack’ta iglem yapmadan giristen bir sembol okur ve q,, q, veya
qg durumlarindan birisine geger. Boylece compatible iki gecis olan ((q, e, S), (g,
aSb))ve ((q, e, S), (q, e)) gecislerini ayirtr.

i Top-Down Parsing

Ornek : (devam) DPDA M, ’nin ab$ icin gecisleri asagida verilmistir.

Step State Unread Input Stack Transition Used Rule of G
0 p ab$ e s

1 q ab$ 5 i

2 Ga b$ S 2

3 Ja BS e aSh 7 1§ = aSb
4 q bS$ Sh 5

5 dp $ Sb 4

6 Qb $ b 8 S —e
7 q $ e 5

8 qs c e 6

i Top-Down Parsing

Ornek : (devam)
s M,, L = {a"b"} diline ait string’leri tamimak icin deterministic olarak ¢alisir.
» M, giris string’ini leftmost derivation ile iiretir.

» Ornekteki 3. ve 6. adimlar parse tree’nin olusturuldugu adimlardur.

Portion
S of parse tree
already
constructed
S (step 3)
/’\ Portion to
L be constructed
I (step 6) /
e :

(a) (b)
s M, string’in dile ait olup olmadigini bulur, ayni anda parse tree olusturur.

m Parse tree compiler’larin kullandigi parser’larda assembly dilinde program
olusturmak icin kullanilmaktadir.

n M, top-down parser’dir, parse tree top-down ve left-to-right yaklasimiyla olusur.

i Top-Down Parsing

Ornek: Daha énce dogru yazilnus aritmetik ifadeler icin olusturulmus
grammar’e F — (E), seklinde bir kural ekleyelim. Bu yeni kural fonksiyon
cagirmalarint saglar. (Orn.: sqri(x ¥*x + 1))

Bu grammar icin bir top-down parser olusturalim.

M;=({p.q}, 2. I, 4,p, {q})
2={() + *%id},
I'=YU(ET,F}
4=0.((p, e,), (g, E))
1.((q, e E), (g, E+T))
2.((q e E), (¢, T))
3.((qg, ¢ 1), (g, T*F))
4.((q. ¢ 1) (q F))
5.((g, e F), (g, (E)))
6.((q, e F), (g, id))
7.((q, e, F), (g, id(E)))
ve son olarak tiim a € X'igin ((q, a, a), (g, e)) € A olsun.

i Top-Down Parsing

Ornek: (devam)

e Bu otomatta nondeterminism 1-2, 3-4 ve 5-6-7 kurallarindan
kaynaklanmaktadir.

Transition 6 ve 7: M; otomatimin (q, id, F) konfigiirasyonunda oldugunu
diigtinelim. M ; bu durumda 5, 6 veya 7 gecislerinden birisini segebilir. Input
string ’teki bir sonraki sembole (id) bakarak 5 elenir. Transition 5’te (()bir
sonraki semboldiir. Ancak bir sonraki sembol 6 ve 7 icin aynidir (id).

* Bu problem sag tarafi ayni olmasada ilk sembolii ayni olan F — id ve
F — id(E) kurallarindan kaynaklanmaktadur.

» F—idve F — id(E) kurallartmin yerine F — idA, A — eve A — (E)
kurallart konularak giderilebilir. Burada A yeni bir nonterminaldir.

» Transition 6 ve 7 yerine asagidaki kurallar konur;
6" ((q, e, F), (q, idA))
7" ((q, e, A), (g, €))
8. (g, e A) (g, (E))

Gegisler (q, id(id), F) }, (q, id(id), idA) |, (g, (id), A) b, (g, (id), (E)) by .. olur.

i Top-Down Parsing

Nondeterminismi ortadan kaldirmak icin kullanilan bu
teknik left factoring olarak adlandirilir. Asagidaki kural ile
ozetlenebilir,

Heuristic Rule 1: Eger A—of,, A—ap,, ..., A—af, seklinde
kurallar varsa ve a # e ve n > 2 ise, bu kurallar A—aA’, A'—p.
kurallartyla degistirilir. A’ yeni nonterminaldir.

i Top-Down Parsing

Transition 1 ve 2: Eger M; otomati bir sonraki input sembol icin id goriirse, ve
stack’taki E ise birkag farkli islem yapilabilir. Transition 2 yapilarak E
verine T yazilir. Girigin sadece id olmasi durumunda bu gecerlidir.
Transition 1 kullanilarak E yerine E + T yazilir. Girisin id + id olmast
durumunda gecerlidir. Transition 1 iki defa ve Transition 1 bir defa
kullamlabilir. Girisinid + id + id olmasit durumunda gecerlidir. Burada sag
taraftaki islemin kag defa tekrarlanacaginin sinirt belli degildir.

* Bu olay left recursion olarak adlandirilir.

* Buproblem E — E + T kuralindan kaynaklanmaktadir. Soldaki nonterminal
sagdaki ilk semboldiir.

e E—E+T veE— Tkurallari yerine E— TE', E'— +TE ve E' — ¢
kurallari konularak giderilebilir. Burada E' yeni bir nonterminaldir.

o AymiislemT— T *F, T — F iginde yapilir. T — FT, T'— *FT ve T' — ¢

i Top-Down Parsing

Ornekteki grammar’in son sekli asagidaki gibi olur.

G'=(V,2RE),
V=3U[EE TT,F A},
R =
1. E—>TE'
2. E'— +TE'
3E —e
4. T—FT
5.7 — *FT’
6.T —e
7.F — (E)
8. F—idA
9A—>e¢
10. A — (E)

i Top-Down Parsing

Nondeterminismi ortadan kaldirmak icin kullanilan bu left
recursion teknigi asagidaki kural ile 6zetlenebilir;

Heuristic Rule 2: Eger A—Aa,,..., A—Aa, ve A>p,,...A—>f,
seklinde kurallar varsa ve p; ler A ile baglamiyorsa ve n > 0 ise,
bu kurallar A—pBA',..., A—p, A" ve A'—a,A’,..., A'—a, A’ ve
A'—e kurallariyla degistirilir. A’ yeni nonterminaldir.

i Top-Down Parsing

Ornek: Onceki grammar’i taniyan DPDA M 4 = L(G')$ olusturalim.
M4 = (K ZU{$}) V,’ A) P’ {Q$})y
K=1p, 4 94 9+ 9 9) 9 95/ »
4=((p, e,), (¢, E))
(g a, e) (q,¢€) timae XY U{$}
(4, € a), (g, €)) tima e 2
(9, ¢ E), (9, TE) timae XU $]
((q,, ¢ E), (q,, +TE"))
(9 € E'), (4, ¢)) timae{) $}
(9o e 1) (q, FT)) timae Xu{$}
((C]x’ e, T,)x (Qx’ *FT’))
(90 e T), (9, €) timae{+)$}
((C](’ e F)x (Q(’ (E)))
((qi0 € F), (q;p 1dA))
((C](’ e A): (Q(’ (E)))
(4. € A). (4, €) timae{+ %) $}
M, deterministic pushdown automaton’u G' grammar’i icin bir parser’dir.

i Top-Down Parsing

Ornek: (devam) id * (id)$ giris string’i asagidaki tabloda goriildiigii gibi kabul edilir.

Step State Unread Input Stack Rule of G/
0 P id = (id)$ e

1 q id * (id)$ E

3 did *(Id)$ TE' 1
4 9id *(ld)$ T Bl 4
5 qid *(Ed)‘f idAT'E’ 8
6 q x(id)$ AT'E'

7 G+ (id)$ AT'E'

8 G+ (id)$ T 9
9 s (id)$ o BUTRE 5
10 q (id)$ B,

6l q id)$ B

1% q id)$ (E)T'E' 7
53 q id)$ ENT'E'

i Top-Down Parsing

Ornek: (devam)

14 %)$ BT B
15 Gid)$ TERE! 1
16 qid)$ FT'E’)T’E’ 4
1L did S dAT' BT E 8
18 q N AT ENTE
19 Q) b ATTESEE
20 Q) $ T E B 10
21 9 $ ENT'E 6
22 7 $ \T'E' 3
23 q $ 15 6
24 qs e fE
24 qs e £ 6
26 qs e e &

i Top-Down Parsing

Ornek: (devam) G’ deki kurallar ile stack iizerinde nonterminal degistirilen adimlar
tabloda son siitunda numaralandirilnugtir. Sirayla bu kurallar uygulandiginda
id*(id)$ string’inin leftmost derivation’t elde edilir.

Olusturulan parse yandadir. E (step 3)
E = TE . - R
= FTE' T (step 4) E' (step 26
= idT'E' e T l
= ld >kF‘T"E" F (step 5) T’(step 9) >
= id *(E)T'E’ e i o
= id ¥TE')TE’ id A (step8) * F T' (step 25)
. 7 7 /\
= id *(FT'E')TE | |
= id *(idT'E')TE’ e (E(step 15)) e
. g , /\
= id *(idE')TE : /
= id *(id)T'E’ T (step 16) E' (step 22)
. . ’ /\
%
z ZZZ *%ﬁE F (step 17) T'(step21) e
/\ ’
€

Parse tree top-down ve q A (step 20)
left-first olarak olusmustur. |
€

i Bottom-Up Parsing

» Context-free dillerin parse edilmesinde en iyi yol yoktur.
Farkli grammar’ler icin farkli yontemler vardir.

o Farkli bir yaklagimda automaton ilk once girisi okur ve
derivation sonra yapilir.

* Sonucta parse tree yapraklardan root node’a dogru
gerceklegir.

* Bu yontemler bottom-up olarak adlandirilirlar.

i Bottom-Up Parsing

G=(V,2, R, S)bir CFGi¢cinM = (K, 2, I, 4, p, F) bottom-up
pushdown automaton’u olusturalim. Burada K = {p, q}, ' =V,
F = {q} ve 4 asagidaki gecislere sahip olsun.

1. ((p,a e), (p,a)) timae Xicin
2. ((p, a, a®), (p,A)) timA — o € Rigin

3. ((p, e S) (g ¢))

Her transition bir transition sinifint gostermektedir. Transition 1
input sembolleri stack’a aktarir. Transition 2 stack’ta
kurallarin sag kismumin yerine sol kismini degistirir. Kurallarin
sag kismu ters sirada bulunmalidir. Transition 3 ise sonu¢
durumuna gecerek calismayt sonlandirmayi saglar.

i Bottom-Up Parsing

Ornek: Aritmetik deyimleri iireten gramer icin bir bottom-up pushdown
automaton olusturalim. Kurallar asagidaki gibi olsun.

E—E+T (RI) E—T (R2)
T—>T*F (R3) T—F (R4)
F— (E) (R5) F—id (R6)
M pushdown automaton’u icin asagidaki gecisler olusturulur.
(p, a, e), (p, a) tiim a € X'igin (40)
(e, T+E), (p, E) (41)
(p,eT) (p, E) (42)
(p,e, F*1), (p, T) (43)
(p, e F) (p, T) (44)
(p, e, JE(), (p, F) (45)
(p, e id), (p, F) (46)
(p. e, E) (g, e) (47)

i Bottom-Up Parsing

Ornek: (devam) id * (id) asagidaki gibi kabul edilir.

Step State Unread Input Stack Transition Used Rule of G
0 P id x (id) e

il P *(id) id A0

2 P x(id) iR A6 R6
& p x(id) i Ad R4
4 P (id) il A0

5 p id) (T A0

6 P) WEeT AQ

7 p e A6 R6
8 P T A4 R4
9 P) E(HT A2 R2
10 D e JE(xT A0

11 P e BExT A5 R5
12 D e 7 A3 R3
113 p e /5 A2 R2
14 q e e AT

i Bottom-Up Parsing

Ornek: (devam)

* M otomati deterministic degildir. Ciinkii A0 diger tiim
gecislerle (A1 - A8) compatible’dir.

* Herhangi bir anda M bir terminali stack’a aktarabilir (1, 4,
5, 6 ve 10 adimlar) veya stack’taki birkag sembolii bir
kuralin sag kismi olarak elde edebilir.

* Kuralin sag kismu olarak goriilen string sol kisimla
degistirilerek indirgenir(41 — 46).

o Indirgeme yapilan adimlar ters sirada alinirsa rightmost
derivation yapilir.

i Bottom-Up Parsing

Ornek: (devam)
Indirgeme yapilan adimlarn ters sirada alinmastiyla elde
edilen rightmost derivation asagidaki gibidir.

E

~

T*F
T *(E)
T *(T)
T *(F)
T * (id)
F *(id)
id * (id)

JJudduidd

i Odev
= Problemleri ¢6ziintz 3.5.2c (sayfa 148)
= Problemleri ¢6ziiniz 3.5.5a (sayfa 148)
= Problemleri ¢6ziinlz 3.5.14a, 3.5.14c (sayfa 149)

= Problemleri ¢6ziiniz 3.7.1a, 3.7.1b (sayfa 173)

