
1

Nesne Yönelimli Programlama

Hazırlayan: M.Ali Akcayol

Gazi Üniversitesi

Bilgisayar Mühendisliği Bölümü

Not: Bu dersin sunumları, “Java Programlama Dili ve Yazılım Tasarımı, Altuğ B. Altıntaş, Papatya 

Yayıncılık, 2016” kitabı kullanılarak hazırlanmıştır.

Konular

 İstisnalar

 İstisna Oluşumu

 İstisna Yakalama

 İstisna İfadeleri

 İstisna Tip Hiyerarşisi

 RuntimeException İstisna Tipleri

 İstisna Mesajları

 Yeni İstisna Oluşturmak

 finally Bloğu

 finally Bloğu ve return

 finally Bloğu ve System.exit()



2

3

İstisnalar

 Uygulamaların iki önemli görevi vardır:

 Doğruluk: Kendisinden beklenen görevleri doğru bir şekilde yerine 
getirmelidir.

 Sağlamlık: Hatalı davranışlara karşı dayanıklı olmalıdır.

 Örneğin, (A / B - B) gibi bir aritmetik işlemde sonucu doğru 
hesaplamalı ve yanlış girişlere karşı dayanıklı olmalıdır.

 Java, hata oluşmasına neden olabilecek bir durum var 
ise yazılan kodu derlemez.

 Java, ileride oluşabilecek ve bulunması çok güç olan hataların 
erkenden engellenmesini amaçlar.

Konular

 İstisnalar

 İstisna Oluşumu

 İstisna Yakalama

 İstisna İfadeleri

 İstisna Tip Hiyerarşisi

 RuntimeException İstisna Tipleri

 İstisna Mesajları

 Yeni İstisna Oluşturmak

 finally Bloğu

 finally Bloğu ve return

 finally Bloğu ve System.exit()



3

5

İstisna Oluşumu

 Aşağıdaki örnekte diziye erişim hatası oluşur.

 ArrayIndexOutOfBoundsException istisnası oluşur.

6

İstisna Oluşumu

 Bir uygulama içerisinde genel olarak aşağıdaki 
istisnalar oluşabilir:

 Açılmak istenilen fiziksel dosya olmayabilir.

 Kullanıcılar tarafından beklenmedik bir veri girişi 
yapılabilir.

 Ağ bağlantısı kopmuş olabilir.

 Yazılmak istenilen dosya, başkası tarafından açılmış 
olduğundan yazma hakkı olmayabilir.



4

Konular

 İstisnalar

 İstisna Oluşumu

 İstisna Yakalama

 İstisna İfadeleri

 İstisna Tip Hiyerarşisi

 RuntimeException İstisna Tipleri

 İstisna Mesajları

 Yeni İstisna Oluşturmak

 finally Bloğu

 finally Bloğu ve return

 finally Bloğu ve System.exit()

8

İstisna Yakalama

 Oluşan bu istisnayı yakalayıp uygulamanın devam 
etmesini sağlamak mümkündür.

 İstisnaya neden olabilecek kod, try-catch bloğunun 
içerisinde tutularak güvenlik altına alınmış olur. 

 İstisna oluşursa, istisna yakalama mekanizması 
devreye girer.

 Oluşan istisnanın tipine göre, uygulamanın akışı catch
bloklarından birinin içerisine yönlenerek devam eder.

 İstisna nesnedir ve oluştuğunda çok sayıda olay gerçekleşir.



5

9

İstisna Yakalama

 Bir istisna nesnesi belleğin heap alında new() ile oluşturulur.

 İstisna nesnesinin içerisine hatanın oluştuğu satır yerleştirilir.

 İstisnayı yakalamak için catch bloğunun olup olmadığına 
bakılır.

 catch bloğu varsa, uygulamanın akışı uygun catch 
bloğunun içerisinden devam eder.

 catch bloğu yoksa, hatanın oluştuğu yordamı çağıran 
yordama istisna nesnesi gönderilir.

 Eğer bu yordamda da istisnayı yakalamak için catch bloğu 
tanımlanmamış ise, istisna nesnesi bir üst yordama gönderilir.

 Bu sıra devam eder ve en sonunda main() yordamına 
ulaşan istisna nesnesi için bir catch bloğu aranır.

 Eğer main içerisinde de catch bloğu tanımlanmamış 
ise, uygulananın akışı sonlanır. 

10

İstisna Yakalama



6

11

İstisna Yakalama

 Önceki örnekte try-catch bloğu for bloğunun dışında da 
kullanılabilir.

Konular

 İstisnalar

 İstisna Oluşumu

 İstisna Yakalama

 İstisna İfadeleri

 İstisna Tip Hiyerarşisi

 RuntimeException İstisna Tipleri

 İstisna Mesajları

 Yeni İstisna Oluşturmak

 finally Bloğu

 finally Bloğu ve return

 finally Bloğu ve System.exit()



7

13

İstisna İfadeleri

 Bir yordam hangi tür istisnanın oluşabileceğini önceden 
belirtebilir veya belirtmek zorunda kalabilir. 

 Yordamı çağıran diğer yordamlar oluşabilecek istisnayı, ya 
yakalayıp gerekli işlemleri yaparlar ya da kendilerini 
çağıran yordama iletirler.

 İstisnanın oluştuğu yordam içerisinde, o istisna nesnesi 
ile ne yapılacağı bilenemeyebilir.

 İstisnanın oluştuğu yordamdan, kendisini çağıran 
yordama istisna nesnesi gönderilebilir.

 Bir istisna oluştuğunda, catch bloğunun içerisinde 
gerekli işlemler yapılarak uygulamanın çalışması 
sağlanmalıdır.

 Telafi edilemez bir hata oluşursa, hata mesajını 
kaydederek program sonlandırılmalıdır.

14

İstisna İfadeleri

 Aşağıdaki örnekte dosya işlemlerinin try-catch bloğu 
içerisine alınması gereklidir.



8

15

İstisna İfadeleri

 Önceki örnekteki programa try-catch bloğu eklenmiştir.

16

İstisna İfadeleri

 İstisna nesnesi çağıran yordama gönderilmektedir.



9

17

İstisna İfadeleri

 İstisna nesnesi main() yordamına gönderilmektedir.

Konular

 İstisnalar

 İstisna Oluşumu

 İstisna Yakalama

 İstisna İfadeleri

 İstisna Tip Hiyerarşisi

 RuntimeException İstisna Tipleri

 İstisna Mesajları

 Yeni İstisna Oluşturmak

 finally Bloğu

 finally Bloğu ve return

 finally Bloğu ve System.exit()



10

19

İstisna Tip Hiyerarşisi

 Throwable istisna nesnesi, tüm istisna nesnelerinin atasıdır.

20

İstisna Tip Hiyerarşisi

 Throwable sınıfı Object sınıfından türetilmiştir.

 İstisnalar 3 gruba ayrılabilir:

 Error: Ölümcül bir hatayı işarettir ve telafisi neredeyse imkansızdır.
Örneğin, OutOfMemoryError (yetersiz bellek) istisnası oluşmuş ise 
uygulamanın buna müdahele edip düzeltmesi imkansızdır.

 RuntimeException: Uygulama normal çalışırsa ortaya çıkmaması 
gereken istisna tipleridir. Kontrolsüz kodlamadan dolayı meydana 
gelen istisna tipleridir
Örneğin, ArrayIndexOutOfBoundsException istisna tipi, bir 
dizinin olmayan elemanına eriştiğimiz zaman ortaya çıkan bir 
istisnadır. 

 Diğer Exception tipleri: Bu istisnalar çevresel koşullardan dolayı 
meydana gelebilir. 
Örneğin, erişmeye çalışan dosyanın yerinde olmaması 
(FileNotFoundException) veya network bağlantısının kopması 
sonucu ortaya çıkabilecek istisnalardır ve bu istisnalar için önceden bir 
tedbir alınması şarttır.



11

21

İstisna Tip Hiyerarşisi

 Bir uygulama içerisinde oluşabilecek olan tüm istisna 
tiplerini yakalamak için aşağıdaki ifade kullanılabilir:

 Tüm istisnaları yakalamak (Error, RuntimeException
ve diğer Exception türleri) için Throwable istisna tipi 

kullanılabilir.

 Ancak, oluşabilecek istisnalar için bu üç gruba ait istisna 
tiplerinin kullanılması daha uygundur.

Konular

 İstisnalar

 İstisna Oluşumu

 İstisna Yakalama

 İstisna İfadeleri

 İstisna Tip Hiyerarşisi

 RuntimeException İstisna Tipleri

 İstisna Mesajları

 Yeni İstisna Oluşturmak

 finally Bloğu

 finally Bloğu ve return

 finally Bloğu ve System.exit()



12

23

RuntimeException İstisna Tipleri

 Bir dizide olmayan bir elemanına erişilmeye çalışılırsa, 
ArrayIndexOutOfBoundsException hatası olur 
(RuntimeException).

 Bu tür hatalar derleme anında bilinemez.

 Java, bir dosyaya erişirken oluşacak istisnaya karşı 
tedbir alınmasını zorunlu tutar (diğer Exception tipleri).

 Runtime istisna hataları:

 AritmeticException: Bir sayının sıfıra bölünmesiyle ortaya çıkar.

 NullPointerException: Bir sınıf tipindeki referansı, o sınıfa ait bir 
nesneye bağlamadan kullanmaya kalkınca ortaya çıkar.

 NegativeArraySizeException: Bir diziyi negatif bir sayı vererek 
oluşturmaya çalışınca ortaya çıkar.

 ArrayIndexOutOfBoundsException: Bir dizinin olmayan 
elemanına ulaşmak istendiğinde ortaya çıkar.

Konular

 İstisnalar

 İstisna Oluşumu

 İstisna Yakalama

 İstisna İfadeleri

 İstisna Tip Hiyerarşisi

 RuntimeException İstisna Tipleri

 İstisna Mesajları

 Yeni İstisna Oluşturmak

 finally Bloğu

 finally Bloğu ve return

 finally Bloğu ve System.exit()



13

25

İstisna Mesajları

 İstisna nesnesinden bir çok veri elde edilebilir. 

 İstisna oluşumunun yol haritası izlenebilir veya istisna 
oluşana kadar hangi yordamların çağrıldığı 
öğrenilebilir.

 Bu bilgileri elde etmek için kullanılan Throwable 
sınıfına ait yordamlar:
 getMessage(): İstisnaya ait bilgileri String tipinde geri döndürür. 

 getLocalizedMessage(): Exception sınıfından türetilmiş alt sınıflar 
tarafından override yapılmalıdır. 
Bu yordam alt sınıflar tarafından iptal edilmemişse getMessage() 

yordamı ile aynı sonucu döndürür.

 toString(): İstisna hakkındaki açıklamayı String tipinde geri 

döndürür.

26

İstisna Mesajları



14

Konular

 İstisnalar

 İstisna Oluşumu

 İstisna Yakalama

 İstisna İfadeleri

 İstisna Tip Hiyerarşisi

 RuntimeException İstisna Tipleri

 İstisna Mesajları

 Yeni İstisna Oluşturmak

 finally Bloğu

 finally Bloğu ve return

 finally Bloğu ve System.exit()

28

Yeni İstisna Oluşturmak

 Java’nın kendi içerisinde tanımlanmış istisna tiplerinin 
dışında, uygulamaya özgü istisna tipleri oluşturulabilir.



15

29

Yeni İstisna Oluşturmak

Örnek

30

Yeni İstisna Oluşturmak

Örnek



16

31

Yeni İstisna Oluşturmak

Örnek

Konular

 İstisnalar

 İstisna Oluşumu

 İstisna Yakalama

 İstisna İfadeleri

 İstisna Tip Hiyerarşisi

 RuntimeException İstisna Tipleri

 İstisna Mesajları

 Yeni İstisna Oluşturmak

 finally Bloğu

 finally Bloğu ve return

 finally Bloğu ve System.exit()



17

33

finally Bloğu

 Bir işlemin her koşulda (istisna olsun ya da olmasın) 
kesinlikle yapılması isteniyorsa finally bloğu kullanılır.

34

finally Bloğu

Örnek



18

35

finally Bloğu

Örnek

Konular

 İstisnalar

 İstisna Oluşumu

 İstisna Yakalama

 İstisna İfadeleri

 İstisna Tip Hiyerarşisi

 RuntimeException İstisna Tipleri

 İstisna Mesajları

 Yeni İstisna Oluşturmak

 finally Bloğu

 finally Bloğu ve return

 finally Bloğu ve System.exit()



19

37

finally Bloğu ve return

 Bir yordamdan çıkış için return kullanılırsa, finally bloğu 
yordamdan çıkmadan önce çalıştırılır.

Konular

 İstisnalar

 İstisna Oluşumu

 İstisna Yakalama

 İstisna İfadeleri

 İstisna Tip Hiyerarşisi

 RuntimeException İstisna Tipleri

 İstisna Mesajları

 Yeni İstisna Oluşturmak

 finally Bloğu

 finally Bloğu ve return

 finally Bloğu ve System.exit()



20

39

finally Bloğu ve System.exit()

 System.exit() yordamı çağrılırsa, JVM kapatılır ve 
finally bloğuna hiç girilmez. 


