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İstisnalar

 Uygulamaların iki önemli görevi vardır:

 Doğruluk: Kendisinden beklenen görevleri doğru bir şekilde yerine 
getirmelidir.

 Sağlamlık: Hatalı davranışlara karşı dayanıklı olmalıdır.

 Örneğin, (A / B - B) gibi bir aritmetik işlemde sonucu doğru 
hesaplamalı ve yanlış girişlere karşı dayanıklı olmalıdır.

 Java, hata oluşmasına neden olabilecek bir durum var 
ise yazılan kodu derlemez.

 Java, ileride oluşabilecek ve bulunması çok güç olan hataların 
erkenden engellenmesini amaçlar.
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İstisna Oluşumu

 Aşağıdaki örnekte diziye erişim hatası oluşur.

 ArrayIndexOutOfBoundsException istisnası oluşur.
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İstisna Oluşumu

 Bir uygulama içerisinde genel olarak aşağıdaki 
istisnalar oluşabilir:

 Açılmak istenilen fiziksel dosya olmayabilir.

 Kullanıcılar tarafından beklenmedik bir veri girişi 
yapılabilir.

 Ağ bağlantısı kopmuş olabilir.

 Yazılmak istenilen dosya, başkası tarafından açılmış 
olduğundan yazma hakkı olmayabilir.
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İstisna Yakalama

 Oluşan bu istisnayı yakalayıp uygulamanın devam 
etmesini sağlamak mümkündür.

 İstisnaya neden olabilecek kod, try-catch bloğunun 
içerisinde tutularak güvenlik altına alınmış olur. 

 İstisna oluşursa, istisna yakalama mekanizması 
devreye girer.

 Oluşan istisnanın tipine göre, uygulamanın akışı catch
bloklarından birinin içerisine yönlenerek devam eder.

 İstisna nesnedir ve oluştuğunda çok sayıda olay gerçekleşir.
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İstisna Yakalama

 Bir istisna nesnesi belleğin heap alında new() ile oluşturulur.

 İstisna nesnesinin içerisine hatanın oluştuğu satır yerleştirilir.

 İstisnayı yakalamak için catch bloğunun olup olmadığına 
bakılır.

 catch bloğu varsa, uygulamanın akışı uygun catch 
bloğunun içerisinden devam eder.

 catch bloğu yoksa, hatanın oluştuğu yordamı çağıran 
yordama istisna nesnesi gönderilir.

 Eğer bu yordamda da istisnayı yakalamak için catch bloğu 
tanımlanmamış ise, istisna nesnesi bir üst yordama gönderilir.

 Bu sıra devam eder ve en sonunda main() yordamına 
ulaşan istisna nesnesi için bir catch bloğu aranır.

 Eğer main içerisinde de catch bloğu tanımlanmamış 
ise, uygulananın akışı sonlanır. 
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İstisna Yakalama



6

11

İstisna Yakalama

 Önceki örnekte try-catch bloğu for bloğunun dışında da 
kullanılabilir.
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İstisna İfadeleri

 Bir yordam hangi tür istisnanın oluşabileceğini önceden 
belirtebilir veya belirtmek zorunda kalabilir. 

 Yordamı çağıran diğer yordamlar oluşabilecek istisnayı, ya 
yakalayıp gerekli işlemleri yaparlar ya da kendilerini 
çağıran yordama iletirler.

 İstisnanın oluştuğu yordam içerisinde, o istisna nesnesi 
ile ne yapılacağı bilenemeyebilir.

 İstisnanın oluştuğu yordamdan, kendisini çağıran 
yordama istisna nesnesi gönderilebilir.

 Bir istisna oluştuğunda, catch bloğunun içerisinde 
gerekli işlemler yapılarak uygulamanın çalışması 
sağlanmalıdır.

 Telafi edilemez bir hata oluşursa, hata mesajını 
kaydederek program sonlandırılmalıdır.
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İstisna İfadeleri

 Aşağıdaki örnekte dosya işlemlerinin try-catch bloğu 
içerisine alınması gereklidir.
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İstisna İfadeleri

 Önceki örnekteki programa try-catch bloğu eklenmiştir.
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İstisna İfadeleri

 İstisna nesnesi çağıran yordama gönderilmektedir.
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İstisna İfadeleri

 İstisna nesnesi main() yordamına gönderilmektedir.
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İstisna Tip Hiyerarşisi

 Throwable istisna nesnesi, tüm istisna nesnelerinin atasıdır.
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İstisna Tip Hiyerarşisi

 Throwable sınıfı Object sınıfından türetilmiştir.

 İstisnalar 3 gruba ayrılabilir:

 Error: Ölümcül bir hatayı işarettir ve telafisi neredeyse imkansızdır.
Örneğin, OutOfMemoryError (yetersiz bellek) istisnası oluşmuş ise 
uygulamanın buna müdahele edip düzeltmesi imkansızdır.

 RuntimeException: Uygulama normal çalışırsa ortaya çıkmaması 
gereken istisna tipleridir. Kontrolsüz kodlamadan dolayı meydana 
gelen istisna tipleridir
Örneğin, ArrayIndexOutOfBoundsException istisna tipi, bir 
dizinin olmayan elemanına eriştiğimiz zaman ortaya çıkan bir 
istisnadır. 

 Diğer Exception tipleri: Bu istisnalar çevresel koşullardan dolayı 
meydana gelebilir. 
Örneğin, erişmeye çalışan dosyanın yerinde olmaması 
(FileNotFoundException) veya network bağlantısının kopması 
sonucu ortaya çıkabilecek istisnalardır ve bu istisnalar için önceden bir 
tedbir alınması şarttır.
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İstisna Tip Hiyerarşisi

 Bir uygulama içerisinde oluşabilecek olan tüm istisna 
tiplerini yakalamak için aşağıdaki ifade kullanılabilir:

 Tüm istisnaları yakalamak (Error, RuntimeException
ve diğer Exception türleri) için Throwable istisna tipi 

kullanılabilir.

 Ancak, oluşabilecek istisnalar için bu üç gruba ait istisna 
tiplerinin kullanılması daha uygundur.
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RuntimeException İstisna Tipleri

 Bir dizide olmayan bir elemanına erişilmeye çalışılırsa, 
ArrayIndexOutOfBoundsException hatası olur 
(RuntimeException).

 Bu tür hatalar derleme anında bilinemez.

 Java, bir dosyaya erişirken oluşacak istisnaya karşı 
tedbir alınmasını zorunlu tutar (diğer Exception tipleri).

 Runtime istisna hataları:

 AritmeticException: Bir sayının sıfıra bölünmesiyle ortaya çıkar.

 NullPointerException: Bir sınıf tipindeki referansı, o sınıfa ait bir 
nesneye bağlamadan kullanmaya kalkınca ortaya çıkar.

 NegativeArraySizeException: Bir diziyi negatif bir sayı vererek 
oluşturmaya çalışınca ortaya çıkar.

 ArrayIndexOutOfBoundsException: Bir dizinin olmayan 
elemanına ulaşmak istendiğinde ortaya çıkar.
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İstisna Mesajları

 İstisna nesnesinden bir çok veri elde edilebilir. 

 İstisna oluşumunun yol haritası izlenebilir veya istisna 
oluşana kadar hangi yordamların çağrıldığı 
öğrenilebilir.

 Bu bilgileri elde etmek için kullanılan Throwable 
sınıfına ait yordamlar:
 getMessage(): İstisnaya ait bilgileri String tipinde geri döndürür. 

 getLocalizedMessage(): Exception sınıfından türetilmiş alt sınıflar 
tarafından override yapılmalıdır. 
Bu yordam alt sınıflar tarafından iptal edilmemişse getMessage() 

yordamı ile aynı sonucu döndürür.

 toString(): İstisna hakkındaki açıklamayı String tipinde geri 

döndürür.
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İstisna Mesajları
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Yeni İstisna Oluşturmak

 Java’nın kendi içerisinde tanımlanmış istisna tiplerinin 
dışında, uygulamaya özgü istisna tipleri oluşturulabilir.
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Yeni İstisna Oluşturmak

Örnek
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Yeni İstisna Oluşturmak

Örnek
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Yeni İstisna Oluşturmak

Örnek
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finally Bloğu

 Bir işlemin her koşulda (istisna olsun ya da olmasın) 
kesinlikle yapılması isteniyorsa finally bloğu kullanılır.
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finally Bloğu

Örnek



18

35

finally Bloğu

Örnek
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finally Bloğu ve return

 Bir yordamdan çıkış için return kullanılırsa, finally bloğu 
yordamdan çıkmadan önce çalıştırılır.
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finally Bloğu ve System.exit()

 System.exit() yordamı çağrılırsa, JVM kapatılır ve 
finally bloğuna hiç girilmez. 


