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Nesne Yapılandırıcıları

 Nesneler kullanıma sunulmadan önce bazı bilgilere veya 
bazı işlemlerin yapılmasına gereksinim duyabilir. 

 Uygulama programlarının çalışması sırasında nesnelerin 
doğru biçimde başlangıç durumlarına getirilmesi ve 
temizlik işleminin doğru yapılması gereklidir. 

 Temizlik işleminin doğru yapılmaması durumunda, 
daha önceden oluşturulmuş ve artık kullanılmayan 
nesneler sistem kaynaklarında gereksiz yer kaplarlar.

 Başlangıç durumuna getirme işlemleri yapılandırıcı 
(constructor) tarafından gerçekleştirilir.

 Java yapılandırıcıyı, ilgili nesneyi oluşturmadan hemen 
önce otomatik olarak çağırır.

 Yapılandırıcı ile sınıf isimleri birebir aynı olmalıdır. 
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Nesne Yapılandırıcıları
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Nesne Yapılandırıcıları

 Yapılandırıcılar parametre alabilir.
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Adaş Yordamlar (Overloaded Methods)

 Bir ismin birçok yordam için kullanılması (method 
overloading) kullanım kolaylığı sağlar. 

 Aynı isme sahip yordamların ayırt edilebilmesi için 
parametreler türlerinin ve sıralarının farklı olması 
gereklidir.

 Aynı isme sahip yordamların ayırt edilmesinde dönen türün 
farklı olması ayırt edici değildir. 
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Adaş Yordamlar (Overloaded Methods)
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Adaş Yordamlar (Overloaded Methods)
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Varsayılan Yapılandırıcılar

 Eğer uygulamada herhangi bir yapılandırıcı 
oluşturulmazsa, Java bu işlemi kendiliğinden 
yapmaktadır. 

 Varsayılan yapılandırıcılar aynı zamanda parametresiz 
yapılandırıcılar (default constructor veya "no-args" 
constructor) olarak da anılmaktadır.

 Varsayılan yapılandırıcılar içi boş yordamlar olarak 
düşünülebilir. 
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Varsayılan Yapılandırıcılar

 Java varsayılan yapılandırıcıyı kendisi oluşturur. 
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Varsayılan Yapılandırıcılar

 Programcı bir tane yapılandırıcı oluşturduğunda, Java 
varsayılan yapılandırıcı oluşturmaz. 
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this Anahtar Sözcüğü

 this anahtar sözcüğü, içinde bulunulan nesneyi 

gösteren bir referans döndürür.

 this ile nesnelere ait bileşenlere erişim sağlanabilir. 
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this Anahtar Sözcüğü
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this Anahtar Sözcüğü

 this ile başka bir yapılandırıcı çağırılabilir.

 this ilk ifade olmalıdır. Birden fazla yapılandırıcı çağırılamaz.
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Statik Alanlar

 Sadece global alanlara statik özelliği verilebilir. 

 Yerel değişkenlerin statik olma özellikleri yoktur. 

 Global alanları tür olarak iki çeşide ayrılabilir: 

 statik olan global alanlar 

 nesnelere ait global alanlar 

 Statik alanlar, bir sınıfa ait olan alanlardır ve bu sınıfa ait 
tüm nesneler için ortak bir bellek alanında bulunurlar.

 Statik tanımlanmış alanlara sadece bir kez ilk değerleri 
atanır.
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Statik Alanlar

 Statik değişkeni bir nesne değiştirince tüm nesneleri etkiler. 
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Statik Alanlar

 Statik değişkeni bir nesne değiştirince tüm nesneleri etkiler. 
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Statik Yordamlar

 Statik yordamlar (sınıf yordamları) nesnelerden bağımsız 
yordamlardır. 

 Statik bir yordamı çağırmak için herhangi bir nesne 
oluşturulması zorunlu değildir. 

 Statik olmayan yordamlardan (nesneye ait yordamlar) 
statik yordamlar çağırılabilir.

 Statik yordamlardan nesne yordamları doğrudan 
çağrılamaz.
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Statik Yordamlar

 Statik olmayan yordamlardan (nesneye ait yordamlar) 
statik yordamları çağırılabilir.

 Statik yordamlardan nesne yordamları doğrudan 
çağrılamaz.
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Statik Yordamlar

 Statik üyelere sınıf adı ile erişim yapılabilir.
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finalize()ve Çöp Toplayıcı

 Yapılandırıcılar sayesinde nesneler oluşturulurken 
değer atanabilmektedir.

 Oluşturulan nesneler daha sonradan bellekten 
silinmektedir.

 Java programlama dilinde işleri bitince nesneler 
otomatik olarak hafızadan atılır. 

 Java programlama dilinde, bir nesnenin gerçekten çöp 
olup olmadığına karar veren mekanizma çöp 
toplayıcısıdır (garbage collector).

 Çöp toplama sistemi, kodu yazan kişi için büyük bir 
rahatlık oluşturmaktadır.
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finalize()ve Çöp Toplayıcı

 Çalışmakta olan uygulamanın içerisinde bulunan bir nesne 
artık kullanılmıyorsa, bu nesne çöp toplayıcısı 
tarafından bellekten silinir. 

 Çöp toplayıcı (garbage collector) bir nesneyi bellekten 
silmeden hemen önce o nesnenin finalize()

yordamını çağırır.

 Böylece bellekten silinecek olan nesnenin yapması gereken 
son işlemler var ise bu işlemler finalize() yordamı 

içerisinde yapılır. 
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finalize()ve Çöp Toplayıcı

Aşağıdaki örnekte finalize() çağırılmadığından çöp toplayıcısı çalışmadı.
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finalize()ve Çöp Toplayıcı

Aşağıdaki örnekte  System.gc() ile çöp toplayıcısı çağırıldı.
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finalize()ve Çöp Toplayıcı

 System sınıfının statik bir yordamı olan gc(), çöp 

toplayıcısının kodu yazan kişi tarafından 
tetiklenmesini sağlar. 

 Böylece çöp toplayıcısı, çöp haline gelmiş olan nesneleri 
(kullanılmayan nesneleri) bularak (eğer varsa) bellekten 
siler. 

 Örnekte; ilk for döngüsünde oluşturulan Elma2 nesneleri, 
döngü bittiğinde çöp halini alacaklardır. 

 Bunun nedeni, ilk for döngüsünün bitimiyle, oluşturulan 10 
adet Elma2 nesnesinin erişilemez bir duruma geleceğidir. 

 Doğal olarak, erişilemeyen bu nesneler, çöp toplayıcısı 
tarafından hafızadan atılmaktadır. 
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finalize()ve Çöp Toplayıcı

Aşağıdaki örnekte referansı olmayan 2. nesne bellekten silinmiştir.



17

33

finalize()ve Çöp Toplayıcı

Örnekteki referansı olmayan 2. nesnenin bellekten silinişi
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finalize()ve Çöp Toplayıcı

Örnekte işlerin bir kısmı finalize()yordamında yapılmaktadır.
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Nesne Değişkenlerine Değer Atanması

 Java ile geliştirilen uygulamalarda üç tür değişken 
çeşidi bulunur: 

 yerel (local) değişkenler

 nesneye ait global alanlar  

 sınıfa ait global alanlar (statik alanlar)

 Bu değişkenlerin tipleri temel (primitive) veya herhangi bir 
sınıf tipinde olabilir.
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Nesne Değişkenlerine Değer Atanması

 Statik fonksiyondan non-statik değişkene erişim yapılamaz.

 Yerel değişken statik olamaz.

38

Nesne Değişkenlerine Değer Atanması

 Nesnelere ait global 
alanlara ilk değerleri 
programcının vermesi 
zorunlu değildir.

 Java bu alanlara 
ilk değerleri 
kendiliğinden 
verir.
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Nesne Değişkenlerine Değer Atanması

 Aksi belirtilmediği sürece nesnelere ait global alanlara, 
herhangi bir sınıf tipinde olması durumunda, başlangıç 
değeri olarak "null" atanır (boş değer).

 Eğer global alanlar bu içeriğiyle kullanılmaya kalkışılırsa, 
çalışma anında (run time) hata ile karşılaşılır. 

 Hata ile karşılaşmamak için ilgili alanları uygun nesnelere 
bağlamak gerekir.
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Nesne Değişkenlerine Değer Atanması

 Sınıflara ait global 
alanlara (statik 
alanlar) değer atama 
ile nesnelere ait 
global alanlara 
değer 
atama aynı şekilde 
yapılır.
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Nesne Değişkenlerine Değer Atanması

 Nesnelere ait global alanlara başlangıç değerleri 
hemen verilir (yapılandırıcılardan (constructor) önce).

 Belirtilen alanların konumu hangi sırada ise başlangıç 
değeri alma sırasında aynı olur.

 Statik alanlar, sınıflara ait olan alanlardır ve statik 
olmayan alanlara (nesne alanları) göre başlangıç 
değerlerini daha önce alırlar.

42

Nesne Değişkenlerine Değer Atanması
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43

Nesne Değişkenlerine Değer Atanması

44

Nesne Değişkenlerine Değer Atanması

 Statik alanlara toplu olarak değer atanabilir.
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Nesne Değişkenlerine Değer Atanması

 Statik olmayan alanlara toplu olarak değer atanabilir.


