
1

Nesne Yönelimli Programlama

Hazırlayan: M.Ali Akcayol

Gazi Üniversitesi

Bilgisayar Mühendisliği Bölümü

Not: Bu dersin sunumları, “Java Programlama Dili ve Yazılım Tasarımı, Altuğ B. Altıntaş, Papatya

Yayıncılık, 2016” kitabı kullanılarak hazırlanmıştır.

Konular

 Nesne Yapılandırıcıları

 Adaş Yordamlar (Overloaded Methods)

 Varsayılan Yapılandırıcılar

 this Anahtar Sözcüğü

 Statik Alanlar

 Statik Yordamlar

 finalize()ve Çöp Toplayıcı

 Nesne Değişkenlerine Değer Atanması

2

3

Nesne Yapılandırıcıları

 Nesneler kullanıma sunulmadan önce bazı bilgilere veya
bazı işlemlerin yapılmasına gereksinim duyabilir.

 Uygulama programlarının çalışması sırasında nesnelerin
doğru biçimde başlangıç durumlarına getirilmesi ve
temizlik işleminin doğru yapılması gereklidir.

 Temizlik işleminin doğru yapılmaması durumunda,
daha önceden oluşturulmuş ve artık kullanılmayan
nesneler sistem kaynaklarında gereksiz yer kaplarlar.

 Başlangıç durumuna getirme işlemleri yapılandırıcı
(constructor) tarafından gerçekleştirilir.

 Java yapılandırıcıyı, ilgili nesneyi oluşturmadan hemen
önce otomatik olarak çağırır.

 Yapılandırıcı ile sınıf isimleri birebir aynı olmalıdır.

4

Nesne Yapılandırıcıları

3

5

Nesne Yapılandırıcıları

 Yapılandırıcılar parametre alabilir.

Konular

 Nesne Yapılandırıcıları

 Adaş Yordamlar (Overloaded Methods)

 Varsayılan Yapılandırıcılar

 this Anahtar Sözcüğü

 Statik Alanlar

 Statik Yordamlar

 finalize()ve Çöp Toplayıcı

 Nesne Değişkenlerine Değer Atanması

4

7

Adaş Yordamlar (Overloaded Methods)

 Bir ismin birçok yordam için kullanılması (method
overloading) kullanım kolaylığı sağlar.

 Aynı isme sahip yordamların ayırt edilebilmesi için
parametreler türlerinin ve sıralarının farklı olması
gereklidir.

 Aynı isme sahip yordamların ayırt edilmesinde dönen türün
farklı olması ayırt edici değildir.

8

Adaş Yordamlar (Overloaded Methods)

5

9

Adaş Yordamlar (Overloaded Methods)

Konular

 Nesne Yapılandırıcıları

 Adaş Yordamlar (Overloaded Methods)

 Varsayılan Yapılandırıcılar

 this Anahtar Sözcüğü

 Statik Alanlar

 Statik Yordamlar

 finalize()ve Çöp Toplayıcı

 Nesne Değişkenlerine Değer Atanması

6

11

Varsayılan Yapılandırıcılar

 Eğer uygulamada herhangi bir yapılandırıcı
oluşturulmazsa, Java bu işlemi kendiliğinden
yapmaktadır.

 Varsayılan yapılandırıcılar aynı zamanda parametresiz
yapılandırıcılar (default constructor veya "no-args"
constructor) olarak da anılmaktadır.

 Varsayılan yapılandırıcılar içi boş yordamlar olarak
düşünülebilir.

12

Varsayılan Yapılandırıcılar

 Java varsayılan yapılandırıcıyı kendisi oluşturur.

7

13

Varsayılan Yapılandırıcılar

 Programcı bir tane yapılandırıcı oluşturduğunda, Java
varsayılan yapılandırıcı oluşturmaz.

Konular

 Nesne Yapılandırıcıları

 Adaş Yordamlar (Overloaded Methods)

 Varsayılan Yapılandırıcılar

 this Anahtar Sözcüğü

 Statik Alanlar

 Statik Yordamlar

 finalize()ve Çöp Toplayıcı

 Nesne Değişkenlerine Değer Atanması

8

15

this Anahtar Sözcüğü

 this anahtar sözcüğü, içinde bulunulan nesneyi

gösteren bir referans döndürür.

 this ile nesnelere ait bileşenlere erişim sağlanabilir.

16

this Anahtar Sözcüğü

9

17

this Anahtar Sözcüğü

 this ile başka bir yapılandırıcı çağırılabilir.

 this ilk ifade olmalıdır. Birden fazla yapılandırıcı çağırılamaz.

Konular

 Nesne Yapılandırıcıları

 Adaş Yordamlar (Overloaded Methods)

 Varsayılan Yapılandırıcılar

 this Anahtar Sözcüğü

 Statik Alanlar

 Statik Yordamlar

 finalize()ve Çöp Toplayıcı

 Nesne Değişkenlerine Değer Atanması

10

19

Statik Alanlar

 Sadece global alanlara statik özelliği verilebilir.

 Yerel değişkenlerin statik olma özellikleri yoktur.

 Global alanları tür olarak iki çeşide ayrılabilir:

 statik olan global alanlar

 nesnelere ait global alanlar

 Statik alanlar, bir sınıfa ait olan alanlardır ve bu sınıfa ait
tüm nesneler için ortak bir bellek alanında bulunurlar.

 Statik tanımlanmış alanlara sadece bir kez ilk değerleri
atanır.

20

Statik Alanlar

 Statik değişkeni bir nesne değiştirince tüm nesneleri etkiler.

11

21

Statik Alanlar

 Statik değişkeni bir nesne değiştirince tüm nesneleri etkiler.

Konular

 Nesne Yapılandırıcıları

 Adaş Yordamlar (Overloaded Methods)

 Varsayılan Yapılandırıcılar

 this Anahtar Sözcüğü

 Statik Alanlar

 Statik Yordamlar

 finalize()ve Çöp Toplayıcı

 Nesne Değişkenlerine Değer Atanması

12

23

Statik Yordamlar

 Statik yordamlar (sınıf yordamları) nesnelerden bağımsız
yordamlardır.

 Statik bir yordamı çağırmak için herhangi bir nesne
oluşturulması zorunlu değildir.

 Statik olmayan yordamlardan (nesneye ait yordamlar)
statik yordamlar çağırılabilir.

 Statik yordamlardan nesne yordamları doğrudan
çağrılamaz.

24

Statik Yordamlar

 Statik olmayan yordamlardan (nesneye ait yordamlar)
statik yordamları çağırılabilir.

 Statik yordamlardan nesne yordamları doğrudan
çağrılamaz.

13

25

Statik Yordamlar

 Statik üyelere sınıf adı ile erişim yapılabilir.

Konular

 Nesne Yapılandırıcıları

 Adaş Yordamlar (Overloaded Methods)

 Varsayılan Yapılandırıcılar

 this Anahtar Sözcüğü

 Statik Alanlar

 Statik Yordamlar

 finalize()ve Çöp Toplayıcı

 Nesne Değişkenlerine Değer Atanması

14

27

finalize()ve Çöp Toplayıcı

 Yapılandırıcılar sayesinde nesneler oluşturulurken
değer atanabilmektedir.

 Oluşturulan nesneler daha sonradan bellekten
silinmektedir.

 Java programlama dilinde işleri bitince nesneler
otomatik olarak hafızadan atılır.

 Java programlama dilinde, bir nesnenin gerçekten çöp
olup olmadığına karar veren mekanizma çöp
toplayıcısıdır (garbage collector).

 Çöp toplama sistemi, kodu yazan kişi için büyük bir
rahatlık oluşturmaktadır.

28

finalize()ve Çöp Toplayıcı

 Çalışmakta olan uygulamanın içerisinde bulunan bir nesne
artık kullanılmıyorsa, bu nesne çöp toplayıcısı
tarafından bellekten silinir.

 Çöp toplayıcı (garbage collector) bir nesneyi bellekten
silmeden hemen önce o nesnenin finalize()

yordamını çağırır.

 Böylece bellekten silinecek olan nesnenin yapması gereken
son işlemler var ise bu işlemler finalize() yordamı

içerisinde yapılır.

15

29

finalize()ve Çöp Toplayıcı

Aşağıdaki örnekte finalize() çağırılmadığından çöp toplayıcısı çalışmadı.

30

finalize()ve Çöp Toplayıcı

Aşağıdaki örnekte System.gc() ile çöp toplayıcısı çağırıldı.

16

31

finalize()ve Çöp Toplayıcı

 System sınıfının statik bir yordamı olan gc(), çöp

toplayıcısının kodu yazan kişi tarafından
tetiklenmesini sağlar.

 Böylece çöp toplayıcısı, çöp haline gelmiş olan nesneleri
(kullanılmayan nesneleri) bularak (eğer varsa) bellekten
siler.

 Örnekte; ilk for döngüsünde oluşturulan Elma2 nesneleri,
döngü bittiğinde çöp halini alacaklardır.

 Bunun nedeni, ilk for döngüsünün bitimiyle, oluşturulan 10
adet Elma2 nesnesinin erişilemez bir duruma geleceğidir.

 Doğal olarak, erişilemeyen bu nesneler, çöp toplayıcısı
tarafından hafızadan atılmaktadır.

32

finalize()ve Çöp Toplayıcı

Aşağıdaki örnekte referansı olmayan 2. nesne bellekten silinmiştir.

17

33

finalize()ve Çöp Toplayıcı

Örnekteki referansı olmayan 2. nesnenin bellekten silinişi

34

finalize()ve Çöp Toplayıcı

Örnekte işlerin bir kısmı finalize()yordamında yapılmaktadır.

18

Konular

 Nesne Yapılandırıcıları

 Adaş Yordamlar (Overloaded Methods)

 Varsayılan Yapılandırıcılar

 this Anahtar Sözcüğü

 Statik Alanlar

 Statik Yordamlar

 finalize()ve Çöp Toplayıcı

 Nesne Değişkenlerine Değer Atanması

36

Nesne Değişkenlerine Değer Atanması

 Java ile geliştirilen uygulamalarda üç tür değişken
çeşidi bulunur:

 yerel (local) değişkenler

 nesneye ait global alanlar

 sınıfa ait global alanlar (statik alanlar)

 Bu değişkenlerin tipleri temel (primitive) veya herhangi bir
sınıf tipinde olabilir.

19

37

Nesne Değişkenlerine Değer Atanması

 Statik fonksiyondan non-statik değişkene erişim yapılamaz.

 Yerel değişken statik olamaz.

38

Nesne Değişkenlerine Değer Atanması

 Nesnelere ait global
alanlara ilk değerleri
programcının vermesi
zorunlu değildir.

 Java bu alanlara
ilk değerleri
kendiliğinden
verir.

20

39

Nesne Değişkenlerine Değer Atanması

 Aksi belirtilmediği sürece nesnelere ait global alanlara,
herhangi bir sınıf tipinde olması durumunda, başlangıç
değeri olarak "null" atanır (boş değer).

 Eğer global alanlar bu içeriğiyle kullanılmaya kalkışılırsa,
çalışma anında (run time) hata ile karşılaşılır.

 Hata ile karşılaşmamak için ilgili alanları uygun nesnelere
bağlamak gerekir.

40

Nesne Değişkenlerine Değer Atanması

 Sınıflara ait global
alanlara (statik
alanlar) değer atama
ile nesnelere ait
global alanlara
değer
atama aynı şekilde
yapılır.

21

41

Nesne Değişkenlerine Değer Atanması

 Nesnelere ait global alanlara başlangıç değerleri
hemen verilir (yapılandırıcılardan (constructor) önce).

 Belirtilen alanların konumu hangi sırada ise başlangıç
değeri alma sırasında aynı olur.

 Statik alanlar, sınıflara ait olan alanlardır ve statik
olmayan alanlara (nesne alanları) göre başlangıç
değerlerini daha önce alırlar.

42

Nesne Değişkenlerine Değer Atanması

22

43

Nesne Değişkenlerine Değer Atanması

44

Nesne Değişkenlerine Değer Atanması

 Statik alanlara toplu olarak değer atanabilir.

23

45

Nesne Değişkenlerine Değer Atanması

 Statik olmayan alanlara toplu olarak değer atanabilir.

