
1

Nesne Yönelimli Programlama

Hazırlayan: M.Ali Akcayol

Gazi Üniversitesi

Bilgisayar Mühendisliği Bölümü

Not: Bu dersin sunumları, “Java Programlama Dili ve Yazılım Tasarımı, Altuğ B. Altıntaş, Papatya

Yayıncılık, 2016” kitabı kullanılarak hazırlanmıştır.

Konular

 Polimorfizm

 Geç Bağlama

 Final ve Geç Bağlama

 Polimorfizm ve Tekrar Kullanılabilirlik

 Genişletilebilirlik

 Soyut Sınıflar ve Yordamlar

 Polimorfizm ve Yapılandırıcılar

 Kalıtım ve Yukarıya Çevirim (Upcasting)

 Aşağıya Çevirim (Downcasting)

2

3

Polimorfizm

 Polimorfizm (çok biçimlilik), nesneye yönelik
programlamanın önemli kavramlarından birisidir.

 Polimorfizm ile kalıtım yakından ilişkilidir.

 Kalıtım konusunda iki taraf bulunmaktadır, ana sınıf ve bu
sınıftan türeyen alt sınıf/sınıflar.

 Alt sınıf, türetildiği ana sınıfa ait tüm özelliklere sahip
olur.

 Ana sınıf ne yapıyorsa türetilen alt sınıfta bu işlemlerin
aynısını yapabilir.

 Türetilen alt sınıfların kendilerine ait bir çok yeni özelliği
de olabilir.

 Türetilen alt sınıfa ait nesneyi, ana sınıf tipindeki
referansa bağlamak yukarıya çevirim (upcasting)
işlemidir.

4

Polimorfizm

 Örnekte, upcasting, polimorfizm ve geç bağlama (late
binding) yapılmıştır.

 Ana sınıf Asker, türeyen sınıflar Er ve Yuzbasi sınıflarıdır.

 Er bir Askerdir, Yuzbası bir Askerdir.

3

5

Polimorfizm

 Asker sınıfının yaptığı her işi Er ve Yuzbasi da yapabilir.

 Bu iki sınıf kendisine özgü özelliklere de sahip olabilir.

 Asker sınıfı ile Er ve Yuzbasi sınıflarının arasında

kalıtımsal bir ilişki vardır.

 Asker türünde nesne alan hazirOl() yordamına Er ve
Yuzbasi tipindeki referanslar gönderilebilir (upcasting).

 Polimorfizm hazirOl() yordamının içerisinde yapılmaktadır.

 hazirOl() içerisinde Asker tipinde olan a referansı
kendisine gelen 2 farklı nesneye (Er ve Yuzbasi)

bağlanmıştır.

 Aşağıdaki ifadelerin tümü doğrudur:

Asker a = new Asker();

Asker a = new Er();

Asker a = new Yuzbasi();

Konular

 Polimorfizm

 Geç Bağlama

 Final ve Geç Bağlama

 Polimorfizm ve Tekrar Kullanılabilirlik

 Genişletilebilirlik

 Soyut Sınıflar ve Yordamlar

 Polimorfizm ve Yapılandırıcılar

 Kalıtım ve Yukarıya Çevirim (Upcasting)

 Aşağıya Çevirim (Downcasting)

4

7

Geç Bağlama

 Polimorfizm ve geç bağlama (late binding) ilişkilidir.

 Er nesnesine bağlı Er tipindeki referans (e) hazirOl()

yordamına parametre olarak gönderilebilir.

 Er nesnesine ait selamVer() yordamı bulunamazsa,
Asker nesnesine ait selamVer() yordamı çağrılır.

 Er sınıfında, Asker ana sınıfına ait olan selamVer()
yordamı override yapıldığından, Er nesnesinin
selamVer() yordamı çağrılır.

 Yuzbasi nesnesine bağlı Yuzbasi tipindeki referans
hazirOl() yordamına parametre olarak gönderiliyor.

 Hangi nesnenin selamVer() yordamının

çağrılacağına çalışma-anında (run-time) karar
veriliyor (late binding-geç bağlama).

 Bir yordamın ait olduğu nesne derleme anında belli ise,
erken bağlama (early binding-erken bağlama) denir.

8

Geç Bağlama

5

Konular

 Polimorfizm

 Geç Bağlama

 Final ve Geç Bağlama

 Polimorfizm ve Tekrar Kullanılabilirlik

 Genişletilebilirlik

 Soyut Sınıflar ve Yordamlar

 Polimorfizm ve Yapılandırıcılar

 Kalıtım ve Yukarıya Çevirim (Upcasting)

 Aşağıya Çevirim (Downcasting)

10

Final ve Geç Bağlama

 Bir sınıf final yapılırsa, bu sınıfa ait tüm yordamlar final
yapılmış olur.

 Tek başına bir yordam final yapıldığında, türetilmiş alt
sınıflar tarafından override yapılamaz.

 Eğer bir yordam override yapılamazsa, o zaman geç
bağlama (late binding) özelliği ortadan kalkar.

 Bir nesneye ait final olmayan bir yordam çağrıldığında,
Java geç bağlama (late binding) olup olmadığını
kontrol eder.

6

11

Final ve Geç Bağlama

 Kaplan sınıfına ait goster() yordamında kp nesnesi için

geç bağlama yapılmıştır.

12

Final ve Geç Bağlama

 Kaplan sınıfına ait yakalaAv() yordamı final yapıldığı için

override edilemez ve late binding yapılamaz.

7

Konular

 Polimorfizm

 Geç Bağlama

 Final ve Geç Bağlama

 Polimorfizm ve Tekrar Kullanılabilirlik

 Genişletilebilirlik

 Soyut Sınıflar ve Yordamlar

 Polimorfizm ve Yapılandırıcılar

 Kalıtım ve Yukarıya Çevirim (Upcasting)

 Aşağıya Çevirim (Downcasting)

14

Polimorfizm ve Tekrar Kullanılabilirlik

 Kalıtım ve polimorfizm olmazsa,
upcasting ve downcasting
yapılamaz.

Kalıtım yok!!!

8

15

Polimorfizm ve Tekrar Kullanılabilirlik

 Kalıtım ve polimorfizm,
upcasting ve downcasting ile
tekrar kullanılabilirliği artırır.

 mesaiBasla() yordamı

polimorfizm ve geç bağlama
olduğundan tek satırla yazılabilir.

Kalıtım var!!!

Konular

 Polimorfizm

 Geç Bağlama

 Final ve Geç Bağlama

 Polimorfizm ve Tekrar Kullanılabilirlik

 Genişletilebilirlik

 Soyut Sınıflar ve Yordamlar

 Polimorfizm ve Yapılandırıcılar

 Kalıtım ve Yukarıya Çevirim (Upcasting)

 Aşağıya Çevirim (Downcasting)

9

 Genişletilebilirlik, mevcut hiyerarşiyi kalıtım ile
genişletmedir.

17

Genişletilebilirlik

18

Genişletilebilirlik

10

 Mevcut hiyerarşi genişletildi ve 4 yeni sınıf eklenmiştir.
(GenelMudur, AnalizProgramci, SistemProgramci, Sekreter)

19

Genişletilebilirlik

Konular

 Polimorfizm

 Geç Bağlama

 Final ve Geç Bağlama

 Polimorfizm ve Tekrar Kullanılabilirlik

 Genişletilebilirlik

 Soyut Sınıflar ve Yordamlar

 Polimorfizm ve Yapılandırıcılar

 Kalıtım ve Yukarıya Çevirim (Upcasting)

 Aşağıya Çevirim (Downcasting)

11

 Aşağıdaki sınıf hiçbir iş yapmamaktadır, ancak birleştirici
rolüne sahiptir.

 Soyut sınıflardan new() ile nesne oluşturulamaz.

 Soyut bir sınıftan türetilmiş alt sınıflara ait nesneler,
bu soyut sınıf tipindeki referanslara bağlanabilirler
(upcasting).

 Böylece polimorfizm ve geç bağlama kullanılabilir.

 Bir sınıfın soyut olması için, bu sınıfın içerisinde en az
bir adet soyut yordamın bulunması gerekir.

 Soyut yordamların gövde kısmı olmaz (içi boş hiçbir iş
yapmayan yordamdır).

21

Soyut Sınıflar ve Yordamlar

 Soyut bir sınıftan türetilmiş alt sınıflar, soyut sınıfın soyut
yordamlarını override yapmak zorundadır.

 Eğer türetilmiş sınıflar, soyut ana sınıflara ait soyut
yordamları override yapmazsa, derleme hatası oluşur.

 Soyut sınıfların içerisinde soyut yordamların yanı sıra,
gövdeleri olan yani iş yapan yordamlar da bulunabilir.

22

Soyut Sınıflar ve Yordamlar

12

 Soyut Calisan sınıfında 2
yordam var (calis() abstract).

 zamIste() soyut değil.

 Türetilen sınıflarda calis()

override yapılmak zorundadır.

23

Soyut Sınıflar ve Yordamlar

 CepTelefonuCizim ve MonitorCizim sınıfları, ana sınıfa
ait olan noktaCiz() yordamını override yapmıştır.

 Ana sınıftaki cizgiCiz() override yapan yordamı kullanır.

24

Soyut Sınıflar ve Yordamlar

13

Konular

 Polimorfizm

 Geç Bağlama

 Final ve Geç Bağlama

 Polimorfizm ve Tekrar Kullanılabilirlik

 Genişletilebilirlik

 Soyut Sınıflar ve Yordamlar

 Polimorfizm ve Yapılandırıcılar

 Kalıtım ve Yukarıya Çevirim (Upcasting)

 Aşağıya Çevirim (Downcasting)

Futbolcu sınıfında calis() yordamı yapılandırıcıdan önce

çalışmaktadır!!

Futbolcu sınıfının
calis() yordamı

çalıştığında
antreman_sayisi

değerini
almamıştır.
Java 0 değerini
(default value)
atamıştır.

26

Polimorfizm ve Yapılandırıcılar

14

Konular

 Polimorfizm

 Geç Bağlama

 Final ve Geç Bağlama

 Polimorfizm ve Tekrar Kullanılabilirlik

 Genişletilebilirlik

 Soyut Sınıflar ve Yordamlar

 Polimorfizm ve Yapılandırıcılar

 Kalıtım ve Yukarıya Çevirim (Upcasting)

 Aşağıya Çevirim (Downcasting)

 Yukarı çevirim (upcasting) güvenli yöntemdir, daha
çok özelliğe sahip bir tipten daha genel bir tipe doğru çevirim
gerçekleştirilir.

28

Kalıtım ve Yukarıya Çevirim (Upcasting)

15

29

Kalıtım ve Yukarıya Çevirim (Upcasting)

Konular

 Polimorfizm

 Geç Bağlama

 Final ve Geç Bağlama

 Polimorfizm ve Tekrar Kullanılabilirlik

 Genişletilebilirlik

 Soyut Sınıflar ve Yordamlar

 Polimorfizm ve Yapılandırıcılar

 Kalıtım ve Yukarıya Çevirim (Upcasting)

 Aşağıya Çevirim (Downcasting)

16

 Aşağıya çevirim (downcasting), yukarı çevirim
(upcasting) işleminin tam tersidir.

 Aşağıya çevirim, daha genel bir tipten, daha özellikli bir
tipe doğru geçiş demektir.

 Java programlama dilinde aşağıya çevirim yaparken,
hangi tipe doğru çevirim yapılacağı açık olarak
belirtmelidir.

 Yukarı çevirim (upcasting) işleminde böyle bir belirteç
koyma zorunluluğu yoktur.

31

Aşağıya Çevirim (Downcasting)

 Object tipindeki dizi elemanlarını Xmodel nesnesine
dönüştürmek için downcasting yapılmıştır.

32

Aşağıya Çevirim (Downcasting)

17

 Aynı örnek çalışma anında tip tanımlama (Run Time
Type Identification - RTTI) ile yapılabilir.

33

Aşağıya Çevirim (Downcasting)

 Aynı örnek daha kısa yazılabilir.

34

Aşağıya Çevirim (Downcasting)

