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Polimorfizm

 Polimorfizm (çok biçimlilik), nesneye yönelik 
programlamanın önemli kavramlarından birisidir.

 Polimorfizm ile kalıtım yakından ilişkilidir. 

 Kalıtım konusunda iki taraf bulunmaktadır, ana sınıf ve bu 
sınıftan türeyen alt sınıf/sınıflar.

 Alt sınıf, türetildiği ana sınıfa ait tüm özelliklere sahip 
olur.

 Ana sınıf ne yapıyorsa türetilen alt sınıfta bu işlemlerin 
aynısını yapabilir.

 Türetilen alt sınıfların kendilerine ait bir çok yeni özelliği 
de olabilir. 

 Türetilen alt sınıfa ait nesneyi, ana sınıf tipindeki 
referansa bağlamak yukarıya çevirim (upcasting) 
işlemidir.
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Polimorfizm

 Örnekte, upcasting, polimorfizm ve geç bağlama (late 
binding) yapılmıştır.

 Ana sınıf Asker, türeyen sınıflar Er ve Yuzbasi sınıflarıdır.

 Er bir Askerdir, Yuzbası bir Askerdir.
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Polimorfizm

 Asker sınıfının yaptığı her işi Er ve Yuzbasi da yapabilir.

 Bu iki sınıf kendisine özgü özelliklere de sahip olabilir.

 Asker sınıfı ile Er ve Yuzbasi sınıflarının arasında 

kalıtımsal bir ilişki vardır.

 Asker türünde nesne alan hazirOl() yordamına Er ve 
Yuzbasi tipindeki referanslar gönderilebilir (upcasting).

 Polimorfizm hazirOl() yordamının içerisinde yapılmaktadır.

 hazirOl() içerisinde Asker tipinde olan a referansı 
kendisine gelen 2 farklı nesneye (Er ve Yuzbasi) 

bağlanmıştır.

 Aşağıdaki ifadelerin tümü doğrudur:

Asker a = new Asker();

Asker a = new Er();

Asker a = new Yuzbasi();

Konular

 Polimorfizm

 Geç Bağlama

 Final ve Geç Bağlama

 Polimorfizm ve Tekrar Kullanılabilirlik

 Genişletilebilirlik 

 Soyut Sınıflar ve Yordamlar

 Polimorfizm ve Yapılandırıcılar

 Kalıtım ve Yukarıya Çevirim (Upcasting)

 Aşağıya Çevirim (Downcasting)



4

7

Geç Bağlama

 Polimorfizm ve geç bağlama (late binding) ilişkilidir.

 Er nesnesine bağlı Er tipindeki referans (e) hazirOl() 

yordamına parametre olarak gönderilebilir.

 Er nesnesine ait selamVer() yordamı bulunamazsa, 
Asker nesnesine ait selamVer() yordamı çağrılır.

 Er sınıfında, Asker ana sınıfına ait olan selamVer()
yordamı override yapıldığından, Er nesnesinin
selamVer() yordamı çağrılır.

 Yuzbasi nesnesine bağlı Yuzbasi tipindeki referans 
hazirOl() yordamına parametre olarak gönderiliyor. 

 Hangi nesnenin selamVer() yordamının 

çağrılacağına çalışma-anında (run-time) karar 
veriliyor (late binding-geç bağlama).

 Bir yordamın ait olduğu nesne derleme anında belli ise, 
erken bağlama (early binding-erken bağlama) denir.
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Geç Bağlama
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Final ve Geç Bağlama

 Bir sınıf final yapılırsa, bu sınıfa ait tüm yordamlar final 
yapılmış olur.

 Tek başına bir yordam final yapıldığında, türetilmiş alt 
sınıflar tarafından override yapılamaz. 

 Eğer bir yordam override yapılamazsa, o zaman geç 
bağlama (late binding) özelliği ortadan kalkar.

 Bir nesneye ait final olmayan bir yordam çağrıldığında, 
Java geç bağlama (late binding) olup olmadığını 
kontrol eder.
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Final ve Geç Bağlama

 Kaplan sınıfına ait goster() yordamında kp nesnesi için 

geç bağlama yapılmıştır.
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Final ve Geç Bağlama

 Kaplan sınıfına ait yakalaAv() yordamı final yapıldığı için 

override edilemez ve late binding yapılamaz.
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Polimorfizm ve Tekrar Kullanılabilirlik

 Kalıtım ve polimorfizm olmazsa, 
upcasting ve downcasting
yapılamaz.

Kalıtım yok!!!
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Polimorfizm ve Tekrar Kullanılabilirlik

 Kalıtım ve polimorfizm, 
upcasting ve downcasting ile 
tekrar kullanılabilirliği artırır.

 mesaiBasla() yordamı 

polimorfizm ve geç bağlama 
olduğundan tek satırla yazılabilir.  

Kalıtım var!!!
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 Genişletilebilirlik, mevcut hiyerarşiyi kalıtım ile 
genişletmedir.
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Genişletilebilirlik
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Genişletilebilirlik
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 Mevcut  hiyerarşi genişletildi ve 4 yeni sınıf eklenmiştir. 
(GenelMudur, AnalizProgramci, SistemProgramci, Sekreter)
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Genişletilebilirlik

Konular

 Polimorfizm

 Geç Bağlama

 Final ve Geç Bağlama

 Polimorfizm ve Tekrar Kullanılabilirlik

 Genişletilebilirlik 

 Soyut Sınıflar ve Yordamlar

 Polimorfizm ve Yapılandırıcılar

 Kalıtım ve Yukarıya Çevirim (Upcasting)

 Aşağıya Çevirim (Downcasting)



11

 Aşağıdaki sınıf hiçbir iş yapmamaktadır, ancak birleştirici 
rolüne sahiptir.

 Soyut sınıflardan new() ile nesne oluşturulamaz. 

 Soyut bir sınıftan türetilmiş alt sınıflara ait nesneler, 
bu soyut sınıf tipindeki referanslara bağlanabilirler 
(upcasting).  

 Böylece polimorfizm ve geç bağlama kullanılabilir.

 Bir sınıfın soyut olması için, bu sınıfın içerisinde en az 
bir adet soyut yordamın bulunması gerekir. 

 Soyut yordamların gövde kısmı olmaz (içi boş hiçbir iş 
yapmayan yordamdır).
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Soyut Sınıflar ve Yordamlar

 Soyut bir sınıftan türetilmiş alt sınıflar, soyut sınıfın soyut 
yordamlarını override yapmak zorundadır. 

 Eğer türetilmiş sınıflar, soyut ana sınıflara ait soyut 
yordamları override yapmazsa, derleme hatası oluşur.

 Soyut sınıfların içerisinde soyut yordamların yanı sıra, 
gövdeleri olan yani iş yapan yordamlar da bulunabilir.
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Soyut Sınıflar ve Yordamlar
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 Soyut Calisan sınıfında 2 
yordam var (calis() abstract).

 zamIste() soyut değil.

 Türetilen sınıflarda calis() 

override yapılmak zorundadır.
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Soyut Sınıflar ve Yordamlar

 CepTelefonuCizim ve MonitorCizim sınıfları, ana sınıfa 
ait olan noktaCiz() yordamını override yapmıştır.

 Ana sınıftaki cizgiCiz() override yapan yordamı kullanır.

24

Soyut Sınıflar ve Yordamlar
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Futbolcu sınıfında calis() yordamı yapılandırıcıdan önce 

çalışmaktadır!!

Futbolcu sınıfının 
calis() yordamı 

çalıştığında
antreman_sayisi

değerini
almamıştır. 
Java 0 değerini 
(default value) 
atamıştır.
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Polimorfizm ve Yapılandırıcılar
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 Yukarı çevirim (upcasting) güvenli yöntemdir, daha 
çok özelliğe sahip bir tipten daha genel bir tipe doğru çevirim 
gerçekleştirilir.
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Kalıtım ve Yukarıya Çevirim (Upcasting)
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Kalıtım ve Yukarıya Çevirim (Upcasting)
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 Aşağıya çevirim (downcasting), yukarı çevirim 
(upcasting) işleminin tam tersidir. 

 Aşağıya çevirim, daha genel bir tipten, daha özellikli bir 
tipe doğru geçiş demektir. 

 Java programlama dilinde aşağıya çevirim yaparken, 
hangi tipe doğru çevirim yapılacağı açık olarak 
belirtmelidir. 

 Yukarı çevirim (upcasting) işleminde böyle bir belirteç 
koyma zorunluluğu yoktur.
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Aşağıya Çevirim (Downcasting)

 Object tipindeki dizi elemanlarını Xmodel nesnesine 
dönüştürmek için downcasting yapılmıştır. 
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Aşağıya Çevirim (Downcasting)
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 Aynı örnek çalışma anında tip tanımlama (Run Time 
Type Identification - RTTI) ile yapılabilir. 
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Aşağıya Çevirim (Downcasting)

 Aynı örnek daha kısa yazılabilir.
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Aşağıya Çevirim (Downcasting)


