

Perceptron Networks and Applications

M. Ali Akcayol
Gazi University
Department of Computer Engineering

Content

► Applications

- ▶ Classification
- ▶ Clustering
- ▶ Pattern association
- ▶ Function approximation
- ▶ Forecasting

► Evaluation of neural networks

- ▶ Quality of results
- ▶ Generalizability
- ▶ Computational resources

Applications

- ▶ Perception, recognition, memory, conscious thought, dreams, sensorimotor control are desired to be simulated by ANNs.
- ▶ The tasks performed using neural networks can be classified as supervised or unsupervised.
- ▶ In supervised learning, a teacher is available to indicate whether a system is performing correctly.
- ▶ Unsupervised learning, where no teacher is available and learning must rely on guidance obtained heuristically by the system.
- ▶ Supervised learning is provided by classification problems, whereas unsupervised learning is provided by clustering problems.

Content

► Applications

- ▶ Classification
- ▶ Clustering
- ▶ Pattern association
- ▶ Function approximation
- ▶ Forecasting

► Evaluation of neural networks

- ▶ Quality of results
- ▶ Generalizability
- ▶ Computational resources

Applications

Classification

- ▶ Classification, the assignment of each object to a specific class, has an importance in many areas.
- ▶ A training set consisting of sample patterns that are representative of all classes with class membership information for each pattern.
- ▶ The rules for membership in each class are deduced and created by a classifier.
- ▶ The classifier can then be used to assign new patterns to their respective classes.
- ▶ Neural networks have been used to classify samples, map input patterns to different classes.
- ▶ The each output node can used for one class.

Applications

Classification

- ▶ For two-class problems, feedforward networks with a single output node are adequate.
- ▶ An output value close to 1 (>0.9) is considered to indicate one class, while an output value close to 0 (<0.1) indicates the other class.
- ▶ Neural networks have been used successfully in a large number of practical classification tasks:
 - ▶ Recognizing printed or handwritten characters
 - ▶ Classifying loan applications into credit-worthy and non-credit-worthy groups
 - ▶ Analyzing sonar and radar data to determine the nature of the source of a signal

Content

► Applications

- ▶ Classification
- ▶ **Clustering**
- ▶ Pattern association
- ▶ Function approximation
- ▶ Forecasting

► Evaluation of neural networks

- ▶ Quality of results
- ▶ Generalizability
- ▶ Computational resources

Applications

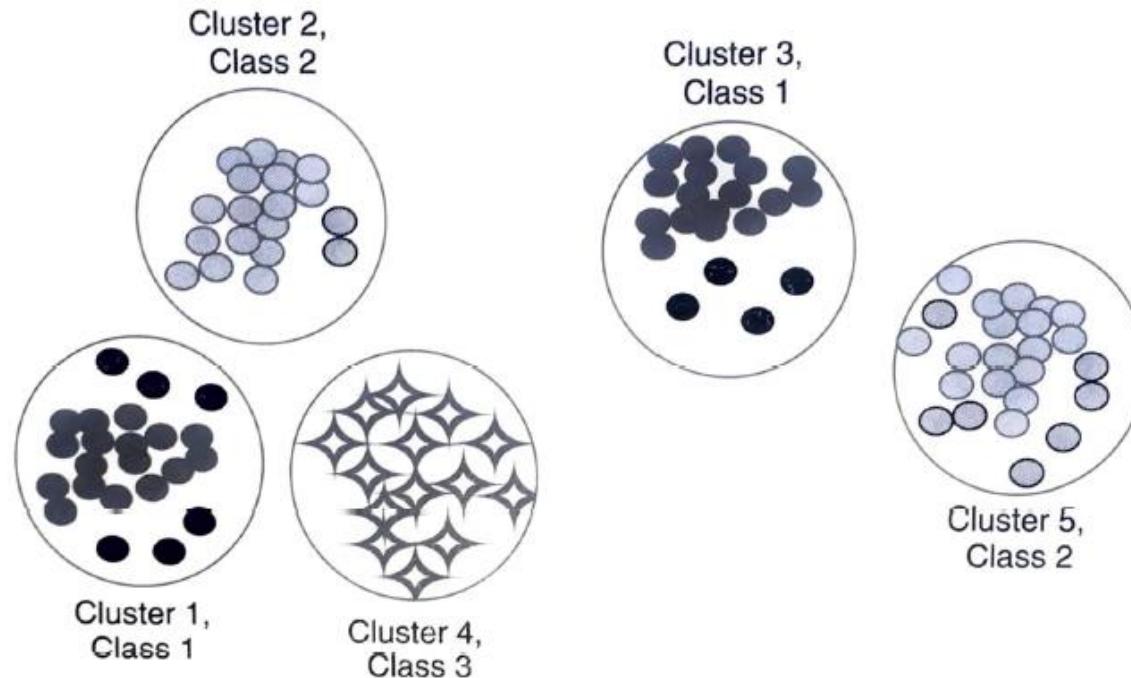
Clustering

- ▶ Clustering requires grouping together objects that are similar to each other.
- ▶ In clustering problems, all data are created using distance relationships that can be derived from the sample descriptions.
- ▶ Most clustering algorithms are based on some distance measure.
- ▶ Similar objects have nearly the same values for different features.
- ▶ Generally, the main aim is to be minimize intra-cluster distances while maximizing inter-cluster distances.
- ▶ Intra-cluster distance can be measured using the distance between different samples from the center (clustroid).
- ▶ Inter-cluster distance can be measured using the distance between the centers of different clusters.

Applications

Clustering

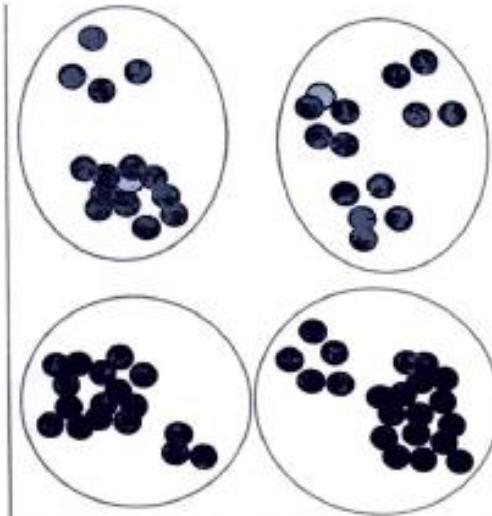
- ▶ The number of clusters depends on the problem.



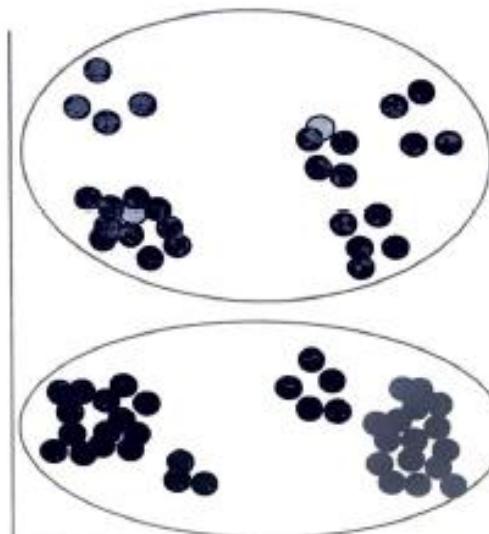
Applications

Clustering

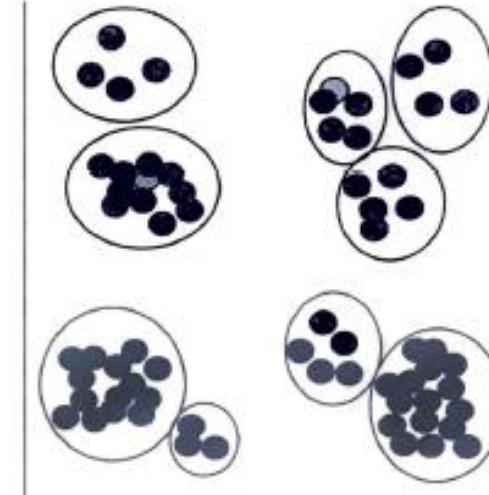
- ▶ The first clusters are preferable since it has neither too many nor too few clusters.



Reasonable number of clusters



Small number of clusters



Too many clusters

Content

► Applications

- ▶ Classification
- ▶ Clustering
- ▶ **Pattern association**
- ▶ Function approximation
- ▶ Forecasting

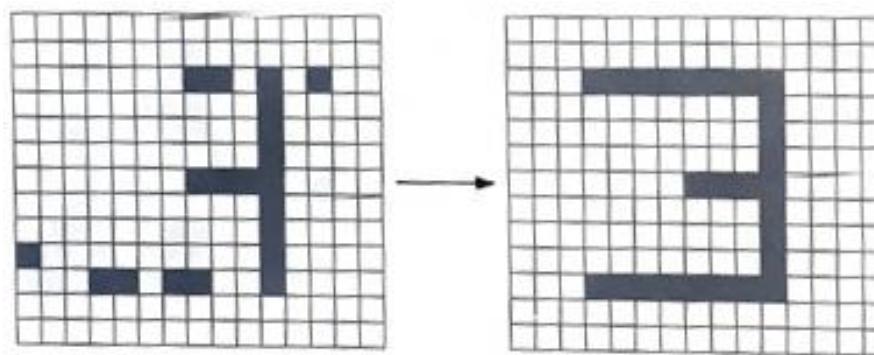
► Evaluation of neural networks

- ▶ Quality of results
- ▶ Generalizability
- ▶ Computational resources

Applications

Pattern association

- ▶ Another important task that can be performed by neural networks is pattern association.
- ▶ The input is presumed to be a corrupted, noisy, or partial version of the desired output pattern.
- ▶ The output pattern may be any arbitrary pattern.
- ▶ The left input is corrupted and has missing information, ANN generates the possible correct output.



Content

► Applications

- ▶ Classification
- ▶ Clustering
- ▶ Pattern association
- ▶ Function approximation
- ▶ Forecasting

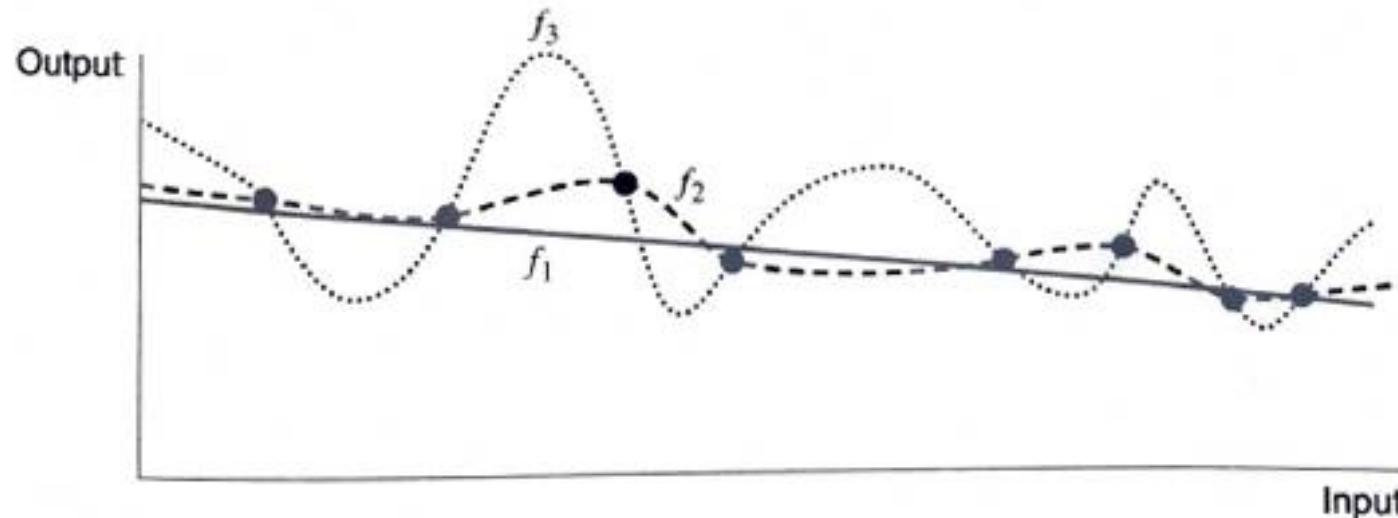
► Evaluation of neural networks

- ▶ Quality of results
- ▶ Generalizability
- ▶ Computational resources

Applications

Function approximation

- ▶ Many ANN models can be used as functions mapping some numerical inputs to numerical outputs.
- ▶ Function approximation is the task of learning or constructing a function that generates approximately the same outputs from inputs.
- ▶ Many different functions can be used to obtain the same finite set of samples.



Content

► Applications

- ▶ Classification
- ▶ Clustering
- ▶ Pattern association
- ▶ Function approximation
- ▶ **Forecasting**

► Evaluation of neural networks

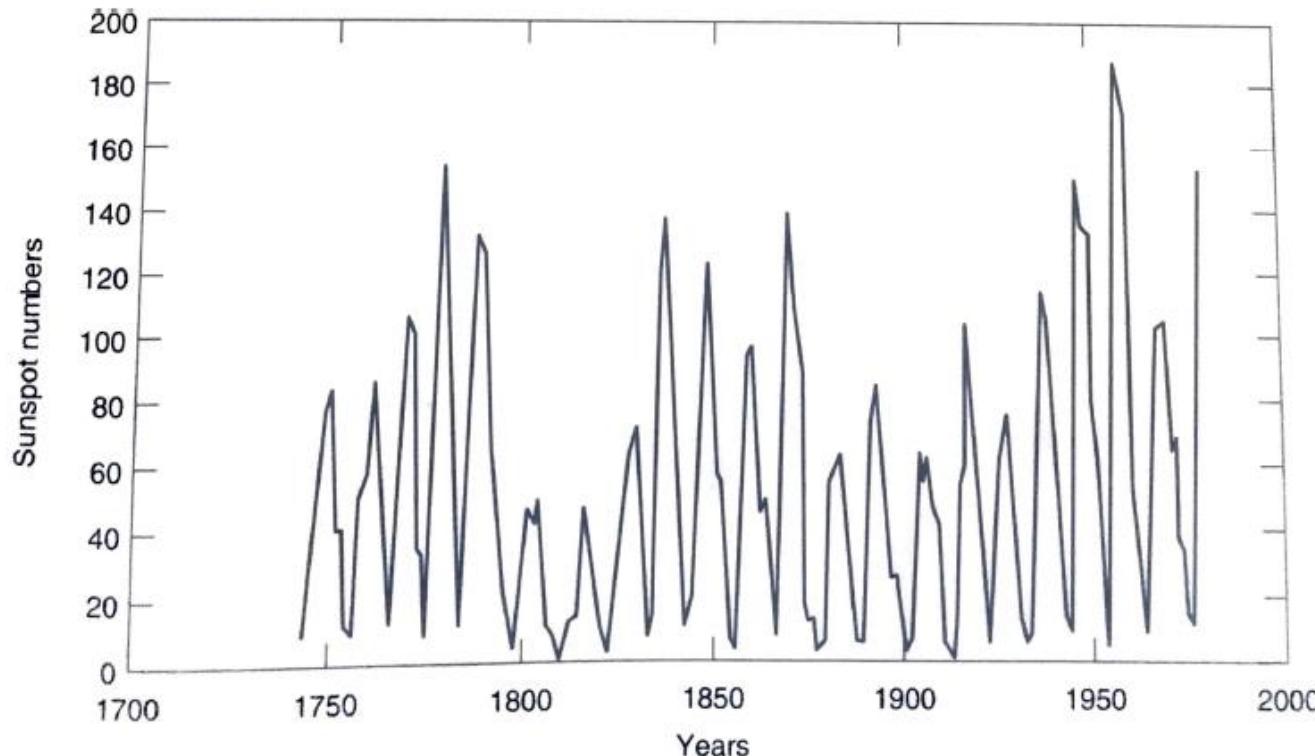
- ▶ Quality of results
- ▶ Generalizability
- ▶ Computational resources

Applications

Forecasting

- ▶ There are many real-life problems in which future events must be predicted on the basis of past history.
- ▶ Perfect prediction is hardly ever possible yet.
- ▶ A time series is a sequence of values measured over time.

$$S = \{v(t) : 1 \leq t \leq N\}$$



Applications

Forecasting

- ▶ For a network that is to make predictions based upon d most recent values of the variable.
- ▶ We extract from S a training set of $(d + 1)$ -tuples.
- ▶ Each such tuple contains $d + 1$ consecutive elements from S .
- ▶ The first d components represent inputs and the last one represents the desired output.
- ▶ In training phase a d -tuple is presented to the network as input
- ▶ The network attempts to predict the next value in the time sequence.
- ▶ Feedforward as well as recurrent networks have been used for forecasting.

Content

► Applications

- ▶ Classification
- ▶ Clustering
- ▶ Pattern association
- ▶ Function approximation
- ▶ Forecasting

► Evaluation of neural networks

- ▶ Quality of results
- ▶ Generalizability
- ▶ Computational resources

Evaluation of neural networks

- ▶ A human learner's capabilities can be evaluated in the following ways.
 - ▶ How well does the learner perform on the data on which the learner has been trained,
 - ▶ How well does the learner perform on new data not used for training the learner?
 - ▶ What are the computational resources (time, space, effort) required by the learner?
- ▶ The performance of neural networks can also be evaluated using the same criteria.

Content

► Applications

- ▶ Classification
- ▶ Clustering
- ▶ Pattern association
- ▶ Function approximation
- ▶ Forecasting

► Evaluation of neural networks

- ▶ Quality of results
- ▶ Generalizability
- ▶ Computational resources

Evaluation of neural networks

Quality of results

- ▶ The performance of a neural network is frequently determined in terms of an error measure.
- ▶ The Euclidean distance is most often used for error measure.

$$(\sum_i (d_i - o_i)^2)^{1/2}$$

where d_i is the i th element of desired output vector, o_i is i th element of output vector.

- ▶ Other measures are Manhattan and Hamming distance.

$$\sum_i |d_i - o_i|$$

- ▶ These measures are generalized to the Minkowski norms,

$$(\sum_i |d_i - o_i|^k)^{1/k} \quad k > 0$$

Evaluation of neural networks

Quality of results - classifications

- ▶ Different error measures should be used for different kind of problems.
- ▶ In classification problems, error measure is the fraction of misclassified samples.

$$E = \frac{\text{Number of misclassified samples}}{\text{Total number of samples}}$$

- ▶ Accuracy measures how many predictions are correct over all the predictions.

$$Accuracy = \frac{\text{Number of correct classifications}}{\text{Total number of test cases}}$$

- ▶ Accuracy gives a ratio without telling what types of errors.
- ▶ Accuracy is significantly affected by imbalanced classes.

Evaluation of neural networks

Quality of results - classifications

- ▶ Confusion Matrix is used to determine the performance of a classifier.

		Predicted Class	
		Positive	Negative
Actual Class	Positive	True Positive (TP)	False Negative (FN) Type II Error
	Negative	False Positive (FP) Type I Error	True Negative (TN)

True Positive (TP) : Observation is positive, and is predicted to be positive.

False Negative (FN) : Observation is positive, but is predicted negative.

True Negative (TN) : Observation is negative, and is predicted to be negative.

False Positive (FP) : Observation is negative, but is predicted positive.

Evaluation of neural networks

Quality of results - classifications

► Case 1: Cost of FN > Cost of FP.

		Actual	
		Diagnosed COVID 19 (1)	Diagnosed Healthy (0)
Predict	COVID 19 (1)	TP 	FP
	Healthy (0)	FN 	TN

Healthy predicted as sick (red arrow pointing to the FP cell)

Sick predicted as healthy (red arrow pointing to the FN cell)

- If we predict COVID-19 patients as healthy people, they do not need to be quarantine.
- There would be a massive number of COVID-19 infections.
- The cost of FNs is much higher than the cost of FPs.

Evaluation of neural networks

Quality of results - classifications

- Case 1: **Cost of FP > Cost of FN.**

		Actual	
		Spam (1)	Not Spam (0)
Predict	Spam (1)	TP 	FP
	Not Spam (0)	FN 	TN

Not spam predicted as spam

Spam predicted as not spam

- If we predict important emails as spam, they may be unreadable.
- If we predict spam mails as not spam, they may be read unnecessarily.
- The cost of FPs is much higher than the cost of FNs.

Evaluation of neural networks

Quality of results - classifications

- ▶ Accuracy is the basic classification metric.

$$ACC = \frac{TP + TN}{TP + TN + FP + FN}$$

- ▶ Accuracy is the proportion of true results among the total number of cases examined.
- ▶ Easily suited for binary as well as a multiclass classification problem.
- ▶ Accuracy is a valid choice of evaluation for classification problems which are well balanced.

Evaluation of neural networks

Quality of results - classifications

- ▶ Precision is the number of correct positive results divided by the number of positive results predicted by the classifier.

$$Precision = \frac{TP}{TP + FP}$$

- ▶ Precision evaluation metric is a valid choice when we want to be very sure of our prediction.

Evaluation of neural networks

Quality of results - classifications

- ▶ Recall is the number of correct positive results divided by the number of all samples that should have been identified as positive.

$$Recall = \frac{TP}{TP + FN}$$

- ▶ It is measure of positive examples labeled as positive by classifier.

Evaluation of neural networks

Quality of results - classifications

- ▶ F1 score is best if we can get a single score that kind of represents both Precision and Recall.

$$F_1 = 2 * \frac{precision * recall}{precision + recall}$$

- ▶ It is good choice when we want to have a model with both good precision and recall.
- ▶ F1 score sort of maintains a balance between the precision and recall for your classifier.
- ▶ The main problem with the F1 score is that it gives equal weight to precision and recall.

Evaluation of neural networks

Quality of results – classifications

Example

Bad Loan = 1

Good Loan = 0

Cost of FN > Cost of FP

		Actual	
		Bad Loan (1)	Good Loan (0)
Predict	Bad Loan (1)	✓ TP - 559	✗ FP - 0
	Good Loan (0)	✗ FN - 33	✓ TN - 22

Instead of using **accuracy**, we should evaluate **recall**. If we can decrease **FN**, the recall will increase.

Accuracy: Out of the total prediction made, how many did we predict correctly?

$$\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}$$

$$\text{Accuracy} = (559+22)/(559+22+33+0) = 95\%$$

Precision: Out of the loan that is predicted as a bad loan, how many did we classify correctly?

$$\text{Precision} = \frac{TP}{TP + FP}$$

$$\text{Precision} = 559/(559+0) = 100\%$$

Recall: Out of the **actual** bad loan, how many did we correctly predict as a bad loan?

$$\text{Recall} = \frac{TP}{TP + FN}$$

$$\text{Recall} = 559/(559+33) = 94.5\%$$

Evaluation of neural networks

Quality of results - clustering

- ▶ For clustering problems, the number of clusters should be small.
- ▶ Intracluster distances should be small and inter-cluster distances should be large.

$$E = \alpha(\text{No. of clusters}) + \beta \sum_{\substack{\text{all} \\ \text{clusters}}} \text{(Intra-cluster Distance)} \\ - \gamma \sum_{\substack{\text{pairs of} \\ \text{clusters}}} \text{(Inter-cluster Distance)}$$

α, β, γ are non-negative

Content

► Applications

- ▶ Classification
- ▶ Clustering
- ▶ Pattern association
- ▶ Function approximation
- ▶ Forecasting

► Evaluation of neural networks

- ▶ Quality of results
- ▶ **Generalizability**
- ▶ Computational resources

Evaluation of neural networks

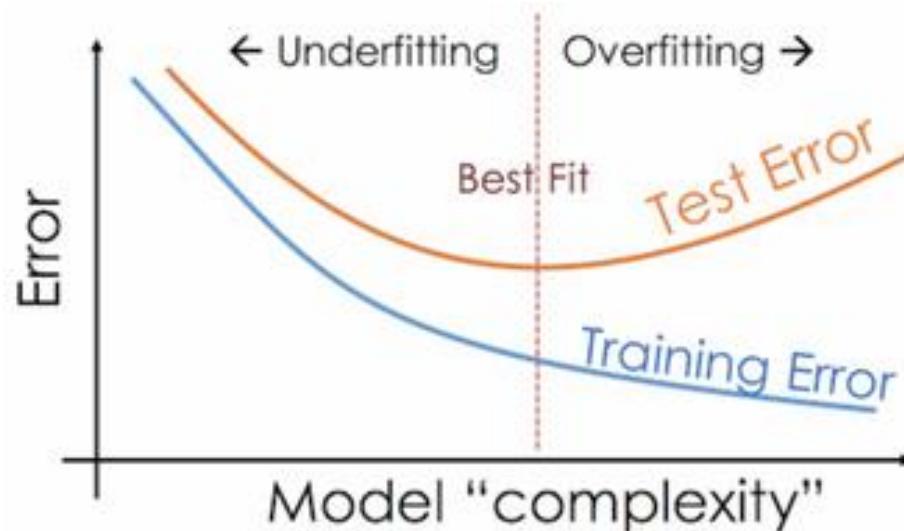
Generalizability

- ▶ A system may perform well on the training data.
- ▶ But, the system must perform well on new test data distinct from training data.
- ▶ Available data is separated into two parts, the training data and the test data.
- ▶ The training data set is used to train the model.
- ▶ The test set (unseen data for model) is used to test the model after training.
- ▶ Training set and test set should be disjoint sets.

Evaluation of neural networks

Generalizability

- ▶ In overtraining, the network performs well on training set but not test set.



- ▶ One way to avoid of overtraining is evaluation of the system using test data as learning proceeds.
- ▶ If there is a succession for only training data and not for the test data, overtraining is considered to have occurred.

Content

► Applications

- ▶ Classification
- ▶ Clustering
- ▶ Pattern association
- ▶ Function approximation
- ▶ Forecasting

► Evaluation of neural networks

- ▶ Quality of results
- ▶ Generalizability
- ▶ Computational resources

Evaluation of neural networks

Computational resources

- ▶ Once training is complete, many neural networks generally take up very little time in execution.
- ▶ Training the networks can take a very long time.
- ▶ Training time increases rapidly with the size of the networks and complexity of the problem.
- ▶ For fast training, the problem can be break down into smaller subproblems and solve each one separately.

Evaluation of neural networks

Computational resources

- ▶ The capabilities of a network are limited by its size.
- ▶ The use of large networks increases training time and reduces generalizability.
- ▶ Size of a network can be measured in terms of the number of nodes, connections, and layers in a network.
- ▶ Complexity of node functions contributes to network complexity measures.