

Perceptron Networks and Applications

M. Ali Akcayol
Gazi University
Department of Computer Engineering

Content

- ▶ Perceptrons
- ▶ Linear separability
- ▶ Perceptron training algorithm
- ▶ Termination criterion
- ▶ Choice of learning rate
- ▶ Non-numeric inputs
- ▶ Adalines
- ▶ Multiclass discrimination

Perceptrons

- ▶ In supervised learning algorithms, the desired result is known for samples in the training data.
- ▶ The learning algorithms are simpler for the networks consisting of only one node in one layer.
- ▶ The modification of the weights is very simple.
- ▶ The perceptrons have simple description but limited capabilities.
- ▶ A perceptron is defined to be a machine that learns using examples.
- ▶ A perceptron also is defined as a stochastic gradient-descent algorithm that separates a set of n-dimensional space linearly.

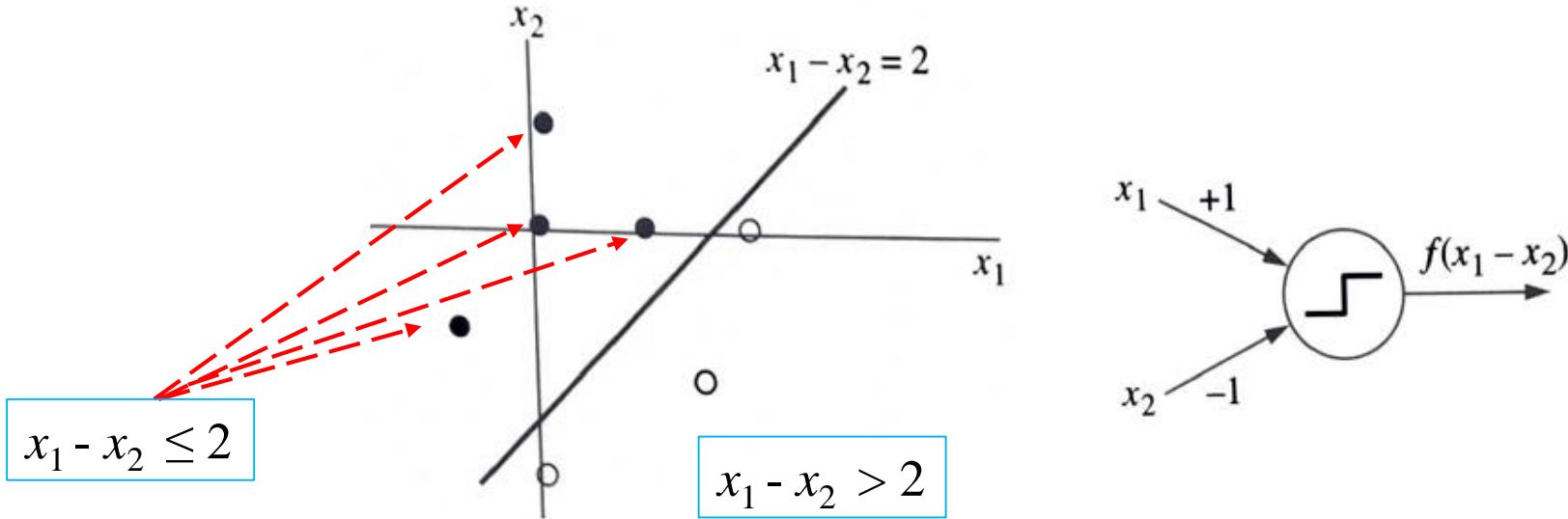
Perceptrons

- ▶ A perceptron has a single output whose values determine that each input pattern belongs to which one of two classes.
- ▶ A perceptron can be represented by a single node.
- ▶ The perceptron applies a step function to the net weighted sum of its inputs.
- ▶ The input pattern is considered to belong to one class or the other.
- ▶ The output class is decided depending on whether the node output is 0 or 1.

Perceptrons

Example

- ▶ Consider two-dimensional samples $(0,0)$, $(0,1)$, $(1,0)$, $(-1,-1)$ that belong to one class, and samples $(2.1,0)$, $(0, -2.5)$, $(1.6, -1.6)$ that belong to another class.
- ▶ These classes are linearly separable.
- ▶ The node function is a step function.
- ▶ The output of the node is 1 if the net weighted input is greater than 2, and 0 otherwise.



Content

- ▶ Perceptrons
- ▶ Linear separability
- ▶ Perceptron training algorithm
- ▶ Termination criterion
- ▶ Choice of learning rate
- ▶ Non-numeric inputs
- ▶ Adalines
- ▶ Multiclass discrimination

Linear separability

- ▶ If there exists a line that separates all samples of one class from the other class, such classification problems are said to be 'linearly separable'.
- ▶ The line's equation is

$$w_0 + w_1 x_1 + w_2 x_2 = 0$$

- ▶ If there is perceptron with weights w_0, w_1, w_2 for connections from inputs $1, x_1, x_2$, the perceptron can separate samples of two classes.
- ▶ If the samples are NOT linearly separable, i.e., no straight line can possibly separate samples belonging to two classes, then there cannot be any simple perceptron that achieves this task.
- ▶ This is the fundamental limitation of simple perceptrons.

Linear separability

- Examples of linearly non separable classes are:

X	O	X X X X X X X X O O X X X X O O X X O O O O O O	O O O O O O O O O O O O O X X X X O O X X X X O	O O	
O	X	Exclusive-or (XOR)		Peninsula	Island

- Most real-life classification problems are linearly nonseparable.

Linear separability

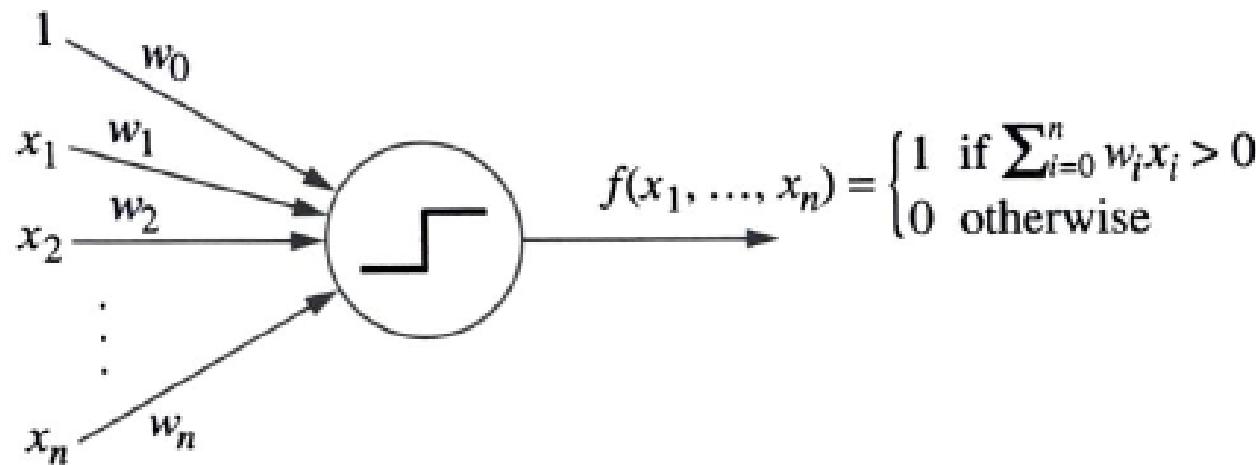
- ▶ If there is only one input dimension x , then the two-class problem can be solved using a perceptron if and only if there is some value x_0 of x such that all samples of one class occur for $x > x_0$, and all samples of the other class occur for $x < x_0$.

(a) Separable by a perceptron

(b) Not separable by a perceptron

Linear separability

- ▶ If there are three input dimensions, a two-class problem can be solved using a perceptron if and only if there is a plane that separates samples of different classes.
- ▶ As in the two-dimensional case, coefficients of terms correspond to the weights of the perceptron.
- ▶ A generic perceptron for n-dimensional space.



- ▶ For this perceptron, hyperplane is $\sum_{i=0}^n w_i x_i = 0$.

Linear separability

- ▶ For spaces of higher number of input dimensions, the geometric presentations need to be extended.
- ▶ Hyperplanes can separate samples of different classes in n-dimensional space.
- ▶ Each hyperplane in n dimensions is defined by the equation

$$w_0 + w_1x_1 + w_2x_2 + \dots + w_nx_n = 0$$

- ▶ Each hyperplane divides the n-dimensional space into two regions:
 - 1- $w_0 + w_1x_1 + w_2x_2 + \dots + w_nx_n > 0$
 - 2- $w_0 + w_1x_1 + w_2x_2 + \dots + w_nx_n < 0$
- ▶ Training algorithms used to obtain the weights of a suitable perceptron.

Content

- ▶ Perceptrons
- ▶ Linear separability
- ▶ Perceptron training algorithm
- ▶ Termination criterion
- ▶ Choice of learning rate
- ▶ Non-numeric inputs
- ▶ Adalines
- ▶ Multiclass discrimination

Perceptron training algorithm

- ▶ Perceptron training algorithm can be used to obtain appropriate weights of a perceptron that separates two classes.
- ▶ Using weight values, the equation of the hyperplane that divide the solution space can be derived.
- ▶ The developed perceptron can be used to classify new samples.
- ▶ Dot product or scalar product of two vectors, w and x , is defined as follows,

$$w = (w_1, w_2, \dots, w_n)$$

$$x = (x_1, x_2, \dots, x_n)$$

$$w \cdot x = (w_1x_1 + w_2x_2 + \dots + w_nx_n)$$

- ▶ Euclidean length $\|v\|$ of a vector v is defined as,

$$\|v\| = (v \cdot v)^{1/2}$$

Perceptron training algorithm

- ▶ The presentation of the learning is simplified by using perceptron output values $\in \{-1, 1\}$ instead of $\{0, 1\}$.
- ▶ Weight values are randomly chosen between **0** and **1**.
- ▶ It is assumed that the perceptron with weight vector w has output **1** if $w \cdot x > 0$, and output **-1** otherwise.
- ▶ If the network output differs from the desired output, the weights must be changed, otherwise cannot be changed.
- ▶ If a sample (*i*) belongs to class 0, but $w \cdot i > 0$, then the weight vector needs to be modified.
- ▶ After each modification, the sample would have a better chance in the following iteration.

Perceptron training algorithm

- ▶ If i belongs to a class (desired node output is -1) but $w \cdot i > 0$, then the weight vector needs to be modified to $w + \Delta w$ so that $(w + \Delta w) \cdot i < w \cdot i$
- ▶ $\Delta w = -\eta \cdot i$, where $\eta > 0$.
- ▶ After modification of the weight, i would have a better chance of being classified correctly in the following iteration.

Algorithm Perceptron;

Start with a randomly chosen weight vector w_0 ;

Let $k = 1$;

while there exist input vectors that are misclassified by w_{k-1} , **do**

 Let i_j be a misclassified input vector;

 Let $x_k = \text{class}(i_j) \cdot i_j$, implying that $w_{k-1} \cdot x_k < 0$;

 Update the weight vector to $w_k = w_{k-1} + \eta x_k$;

 Increment k ;

end-while;

Perceptron training algorithm

- ▶ If i belongs to a class (desired node output is 1) but $w \cdot i < 0$, then the weight vector needs to be modified to $w + \Delta w$ so that $(w + \Delta w) \cdot i > w \cdot i$
- ▶ Let i_1, i_2, \dots, i_p denote the training set, containing p input vectors.
- ▶ We define a function that maps each sample to either +1 (C_1) or -1 (C_0).
- ▶ Samples are presented repeatedly to train the weights.

Perceptron training algorithm

Example

- Let there be 7 one-dimensional input patterns as shown below.

- The 7 input patterns can be separable linearly.
- Samples $\{0.0, 0.17, 0.33, 0.50\}$ belong to one class (desired output 0), and samples $\{0.67, 0.83, 1.0\}$ belong to the other class (desired output 1).
- For the initial randomly chosen value of $w_1 = -0.36$, and $w_0 = -1.0$, $\{0.83, 0.67, 1.0\}$ are misclassified.

Perceptron training algorithm

Example – cont.

- ▶ For the input value 0.83, output is $(0.83)(-0.36) - 1.0 = -1.2$
- ▶ Then the sample has calculated class 0, which is an error (it would be 1).
- ▶ For $\eta = 0.1$, new weights are calculated as,

$$w_1 = -0.36 + (0.1)(0.83) = -0.28$$

$$w_0 = -1 + (0.1)(1) = -0.9$$

- ▶ For the new weights, some samples are still misclassified.
- ▶ The weights are modified iteratively and the final weight values are,

$$w_1 = 0.3$$

$$w_0 = -0.2$$

Perceptron training algorithm

Example – cont.

- ▶ The progress of the training process.

Presentation No.	2	3	4	5	6	7	8	9
Sample	0.33	0.67	0.17	1.00	0.50	0.00	0.83	0.33
Desired output	-1	1	-1	1	-1	-1	1	-1
Net input	-0.99	-1.10	-0.80	-1.00	-0.80	-0.70	-0.80	-0.60
w_1	-0.28	-0.21	-0.21	-0.11	-0.11	-0.11	-0.03	-0.03
w_0	-0.90	-0.80	-0.80	-0.70	-0.70	-0.70	-0.60	-0.60
Number misclassified	3	3	3	3	3	3	3	3
Presentation No.	10	...	17	...	24	25	26	27
Sample	0.67	...	0.67	...	0.67	0.17	1.00	0.50
Desired output	1	...	1	...	1	-1	1	-1
Net input	-0.62	...	-0.15	...	-0.01	-0.04	0.25	0.01
w_1	0.04	...	0.29	...	0.35	0.35	0.30	0.30
w_0	-0.50	...	-0.20	...	-0.10	-0.10	-0.10	-0.20
Number misclassified	3	...	1	...	2	2	2	0

- ▶ What is the reason of the oscillations on weight values?

Perceptron training algorithm

- ▶ There are some important questions:
 - ▶ How long should we execute this training procedure?
 - ▶ What is the termination criterion (if the given samples are not linearly separable)
 - ▶ What is the appropriate choice of the learning rate?
 - ▶ How can the perceptron training algorithm be applied to problems in which the inputs are non-numeric values (color, label, name, ...)?
 - ▶ Is there a guarantee that the training algorithm will always succeed whenever the samples are linearly separable?
 - ▶ Can the perceptron training algorithm work reasonably well when samples are not linearly separable?

Content

- ▶ Perceptrons
- ▶ Linear separability
- ▶ Perceptron training algorithm
- ▶ **Termination criterion**
- ▶ Choice of learning rate
- ▶ Non-numeric inputs
- ▶ Adalines
- ▶ Multiclass discrimination

Termination criterion

- ▶ For many ANN learning algorithms, the termination criterion is "stop when the goal is achieved".
- ▶ For any kind of classifier, the goal is the correct classification of all samples.
- ▶ So the perceptron training algorithm runs until all samples are correctly classified.
- ▶ For perceptron, termination is assured if η sufficiently small and samples are linearly separable.
- ▶ If η is not appropriate or samples are not linearly separable, the algorithm runs indefinitely.
- ▶ How can we detect that this may be the case?

Termination criterion

- ▶ The amount of progress achieved in the recent past can be used to terminate the training.
- ▶ For linear classifier, if the number of correct classification has not changed in large of steps, the samples may not be linearly separable.
- ▶ The same problem may be occurred with the inappropriate choice of η .
- ▶ The different values of η may yield improvement for training phase.

Termination criterion

- ▶ In some problems, two classes overlap (not linearly separable).
- ▶ If the performance requirements allow some amount of misclassification, we can modify the termination criterion.
- ▶ For example, it may known that at least 6% of the samples will be misclassified (or user satisfied with 6%), the termination criterion should be modified.
- ▶ We can then terminate the training algorithm as soon as 94% of the samples are correctly classified.

Content

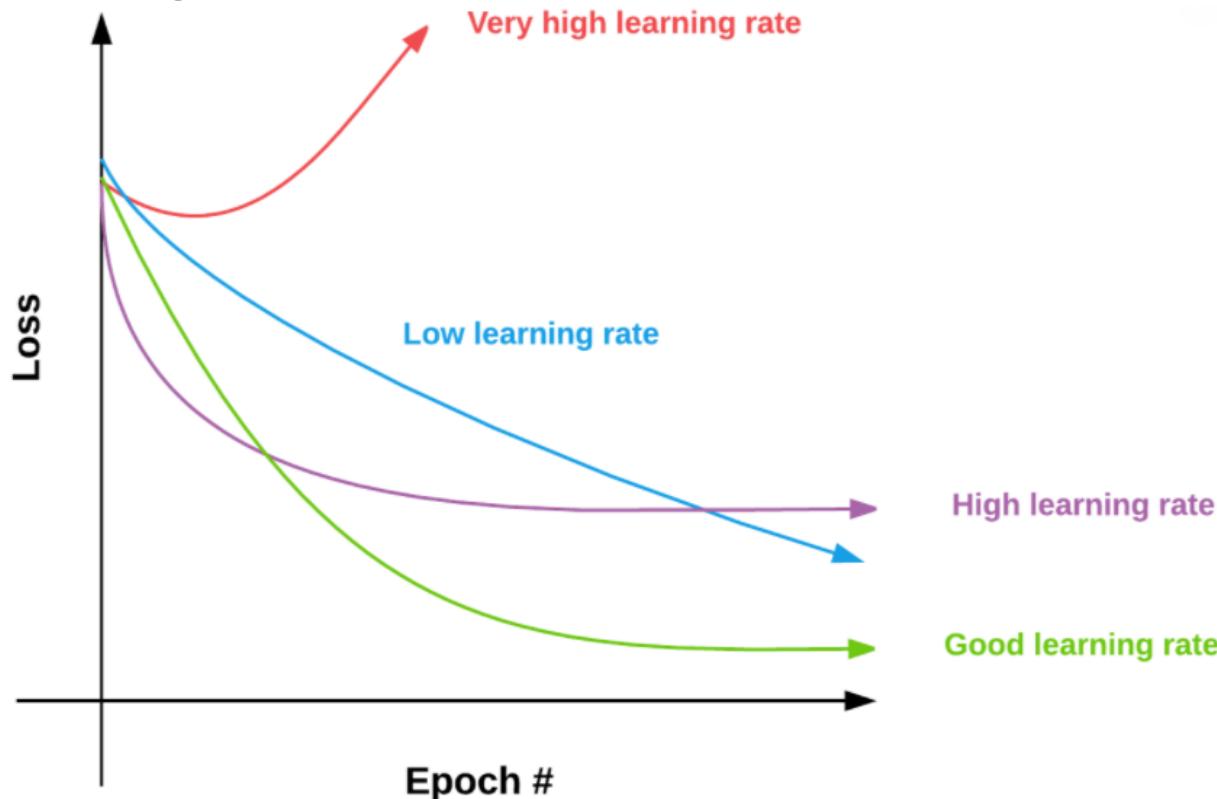
- ▶ Perceptrons
- ▶ Linear separability
- ▶ Perceptron training algorithm
- ▶ Termination criterion
- ▶ Choice of learning rate
- ▶ Non-numeric inputs
- ▶ Adalines
- ▶ Multiclass discrimination

Choice of learning rate

- ▶ The examination of extreme cases can help derive a good choice for η .
- ▶ If η is too large (e.g. 1.000.000), then the components of $\Delta w = \pm \eta x$ can have very large magnitudes.
- ▶ If η is too large, each weight update swings perceptron outputs completely in one direction as a result, the perceptron considers all samples to be in the same class.
- ▶ The system oscillates between extremes.
- ▶ If η is very small (e.g. $\eta = 0$) the weights are never going to be modified.
- ▶ If η equals some too small value, the change in the weights in each step going to be too small. This makes the algorithm exceedingly slow.

Choice of learning rate

- ▶ If η is too large, the progress will start very fast, but eventually jump around the optimal solution and will never settle down.
- ▶ If η is too small, the training will eventually converge to the best state, but this will take a long time.
- ▶ To find a fairly good learning rate, the network should be trained by using various learning rates.



Choice of learning rate

- ▶ What is an appropriate choice for η , which is neither too small nor too large?
- ▶ A common choice is $\eta = 1$, leading to the simple weight change computational rule of $\Delta w = \pm x$, so that $(w + \Delta w) \cdot x = w \cdot x \pm x \cdot x$
- ▶ If $|w \cdot x| > |x \cdot x|$, the sample x may not be correctly classified.
- ▶ In order to ensure that the sample x correctly classified, $(w + \Delta w) \cdot x$ and $x \cdot x$ have opposite signs.

$$|\Delta w \cdot x| > |w \cdot x|$$

$$\eta |x \cdot x| > |w \cdot x|$$

$$\eta > \frac{|w \cdot x|}{|x \cdot x|}$$

Content

- ▶ Perceptrons
- ▶ Linear separability
- ▶ Perceptron training algorithm
- ▶ Termination criterion
- ▶ Choice of learning rate
- ▶ Non-numeric inputs
- ▶ Adalines
- ▶ Multiclass discrimination

Non-numeric inputs

- ▶ In some problems, the input dimensions are non-numeric.
- ▶ For example, input dimension may be "color".
- ▶ Its values may range over the set {red, blue, green, yellow}.
- ▶ We may not establish a relationships between colors on an axis.
- ▶ The simplest way is to generate four new dimensions ("red", "blue", "green", "yellow").
- ▶ We can replace each original attribute-value pair by a binary vector.
- ▶ For instance, color = "green" is represented by the input vector (0, 0, 1, 0), "blue" is (0, 1, 0, 0).
- ▶ The disadvantage of this approach is a drastic increase in the number of dimensions.

Non-numeric inputs

Example

- ▶ The day of the week (Sunday/Monday/ . . .) is an important variable in predicting the amount of electric power consumed in a city.
- ▶ However, there is no obvious way of sequencing weekdays.
- ▶ So it is not appropriate to use a single variable whose values range from 1 to 7.
- ▶ Instead, seven different variables should be chosen and each input sample has a value of 1 for one of these coordinates, and a value of 0 for others.
- ▶ For instance, "Tuesday" is represented as (0, 0, 1, 0, 0, 0, 0), "Monday" is (0, 1, 0, 0, 0, 0, 0).

Content

- ▶ Perceptrons
- ▶ Linear separability
- ▶ Perceptron training algorithm
- ▶ Termination criterion
- ▶ Choice of learning rate
- ▶ Non-numeric inputs
- ▶ Adalines
- ▶ Multiclass discrimination

Adalines

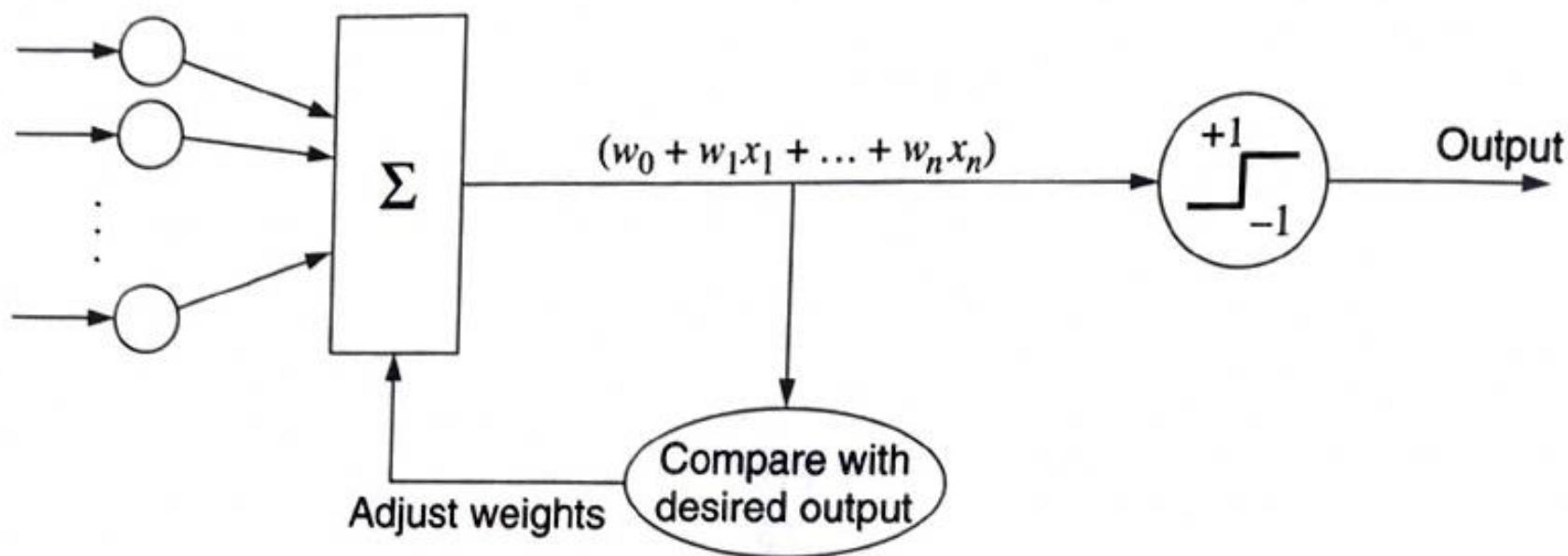
- ▶ The fundamental principle underlying the perceptron learning algorithm is to modify weights to reduce the number of misclassifications.
- ▶ Perfect classification using a linear element may not be possible for all problems.
- ▶ Minimizing the mean squared error (MSE) instead of the number of misclassified samples may be used while training.
- ▶ An adaptive linear element or Adaline, proposed by Widrow (1959, 1960), is a simple perceptron-like system.

Adalines

- ▶ Adaline accomplishes classification by modifying weights in such a way as to diminish the MSE at each iteration.
- ▶ This can be accomplished using gradient descent.
- ▶ MSE is a quadratic function whose derivative exists everywhere.
- ▶ Unlike the perceptron, this algorithm implies that weight changes are made to reduce MSE.
- ▶ Even when a sample is correctly classified by the network, the weights may change.

Adalines

- ▶ In the training process, when a sample is presented to the network, the linear weighted net input is computed.
- ▶ Computed net value is compared with the desired output.
- ▶ Generated error signal used to modify each weight in the Adaline.
- ▶ The weight change rule use partial derivative with respect to weights.

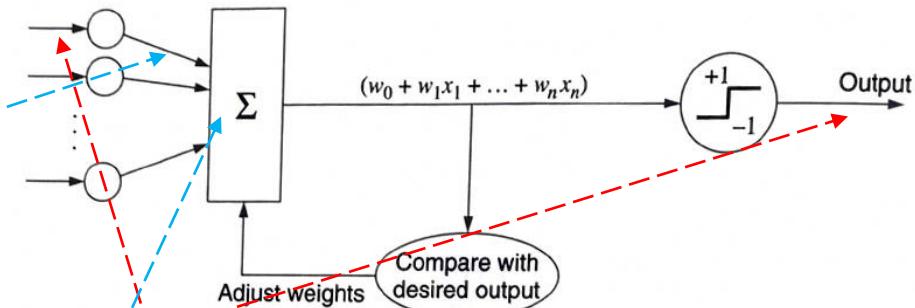


Adalines

- Let $\mathbf{i}_j = (i_0, i_1, \dots, i_n)$ be an input vector for which d_j is the desired output value.
- Let $\text{net}_j = \sum_l w_l i_l$ be the net input to the node.
- $\mathbf{w} = (w_0, \dots, w_n)$ is the presented value of the weight vector.
- The squared error is $E = (d_j - \text{net}_j)^2$

$$\frac{\partial E}{\partial w_k} = 2(d_j - \text{net}_j) \frac{\partial}{\partial w_k} (-\text{net}_j)$$

$$\begin{aligned} &= (d_j - \text{net}_j) \frac{\partial}{\partial w_k} \left(- \sum_{l=0}^n w_l i_{l,j} \right) \\ &= -(d_j - \text{net}_j) i_{k,j}. \end{aligned}$$



- The weight update rule is

$$\Delta w_k = \eta \left(d_j - \sum_l w_l i_{l,j} \right) i_{k,j} = \eta(d_j - \text{net}_j) i_j$$

Adalines

► Adaline Least-Mean-Squares (LMS) training algorithm

Algorithm LMS-Adaline;

Start with a randomly chosen weight vector w_0 ;

Let $k = 1$;

while mean squared error is unsatisfactory and computational bounds are not exceeded, do

Let $i_j = (i_0, i_1, \dots, i_n)$ be an input vector
(chosen randomly or in some sequence)

for which d_j is the desired output value, with $i_0 = 1$;

Update the weight vector to

$$w_k = w_{k-1} + \eta(d_j - \sum_l w_{k-1,l}i_l)i_j$$

Increment k ;

end-while.

► The weight vector w is changed when the input vector i_j is presented to the Adaline.

Adalines

- ▶ A modification on this LMS rule has been made by Widrow and Hoff.
- ▶ The weight change magnitude independent of the magnitude of the input vector.
- ▶ α -LMS (or Widrow-Hoff delta rule) training rule is

$$\Delta w = \eta(d_j - \text{net}_j) \frac{i_j}{\|i_j\|}$$

where, d_j is the desired output for the j th input i_j ,
 $\|i\|$ denotes the length of vector i .

$$\text{net}_j = \sum_{l=0}^n w_l i_{l,j}$$

where, l is the length of the input vector.

Content

- ▶ Perceptrons
- ▶ Linear separability
- ▶ Perceptron training algorithm
- ▶ Termination criterion
- ▶ Choice of learning rate
- ▶ Non-numeric inputs
- ▶ Adalines
- ▶ **Multiclass discrimination**

Multiclass discrimination

- ▶ So far, we have considered dichotomies, or two-class problems.
- ▶ Many important real-life problems require partitioning data into three or more classes.
- ▶ For example, the character recognition problem consists of distinguishing between samples of 29 (for Turkish alphabet) different classes.
- ▶ A layer of perceptrons or Adalines may be used to solve some such multiclass problems.
- ▶ Four perceptrons can put together to solve a four-class classification problem.

Multiclass discrimination

- ▶ Each weight $w_{i,j}$ indicates the strength of the connection j th input to the i th node.
- ▶ A sample is considered to belong to the i th class if and only if the i th output $o_i = 1$, and every other output $o_k = 0$, for $k \neq i$.
- ▶ This network is trained in the same way as perceptrons.
- ▶ If all outputs are zeroes or if more than one output value equals 1, the network is considered to have failed in the classification task.
- ▶ All outputs can have values in between 0 and 1, a 'maximum-selector' can be used to select the highest-value output.

Homework

- ▶ Prepare a report on the use of artificial neural networks in the speech-to-text and text-to-speech applications.