

Perceptron Networks and Applications

M. Ali Akcayol
Gazi University
Department of Computer Engineering

Content

- ▶ Multilayer networks
- ▶ Multilevel discrimination
- ▶ Architecture
- ▶ Objectives

Multilayer networks

- ▶ Perceptrons and one-layer networks, discussed in the preceding lectures, are seriously limited in their capabilities.
- ▶ Feedforward multilayer networks with non-linear node functions can overcome these limitations.
- ▶ MLPs can be used for many applications successfully.
- ▶ The perceptron learning mechanism cannot be used or extended easily for MLPs.
- ▶ More powerful supervised learning techniques for MLPs are presented in this lecture.
- ▶ The focus of this chapter is on a learning mechanism called error ‘backpropagation’ for MLPs.

Multilayer networks

- ▶ Backpropagation came into prominence in the late 1980's.
- ▶ An early version of backpropagation was first proposed by Rosenblatt in 1961.
- ▶ His proposal was crippled by the use of perceptrons that compute step functions of their net weighted inputs.
- ▶ For successful application of this method, differentiable node functions are required.
- ▶ The new algorithm was proposed by Werbos in 1974.
- ▶ Parker (1985) and LeCun (1985) rediscovered it, but its modern specification was provided and popularized by Rumelhart, Hinton, and Williams (1986).

Multilayer networks

- ▶ Backpropagation is similar to the LMS (least mean squared error) learning algorithm described earlier.
- ▶ LMS is based on gradient descent: weights are modified in a direction corresponds to the negative gradient of an error value.
- ▶ The choice of everywhere-differentiable node functions allows correct application of this method.
- ▶ LMS is straightforward and very similar to the Adaline.
- ▶ The major advance of backpropagation over the LMS algorithm is in expressing how an error can be propagated backwards to nodes at lower layers (inputs) of the network.

Multilayer networks

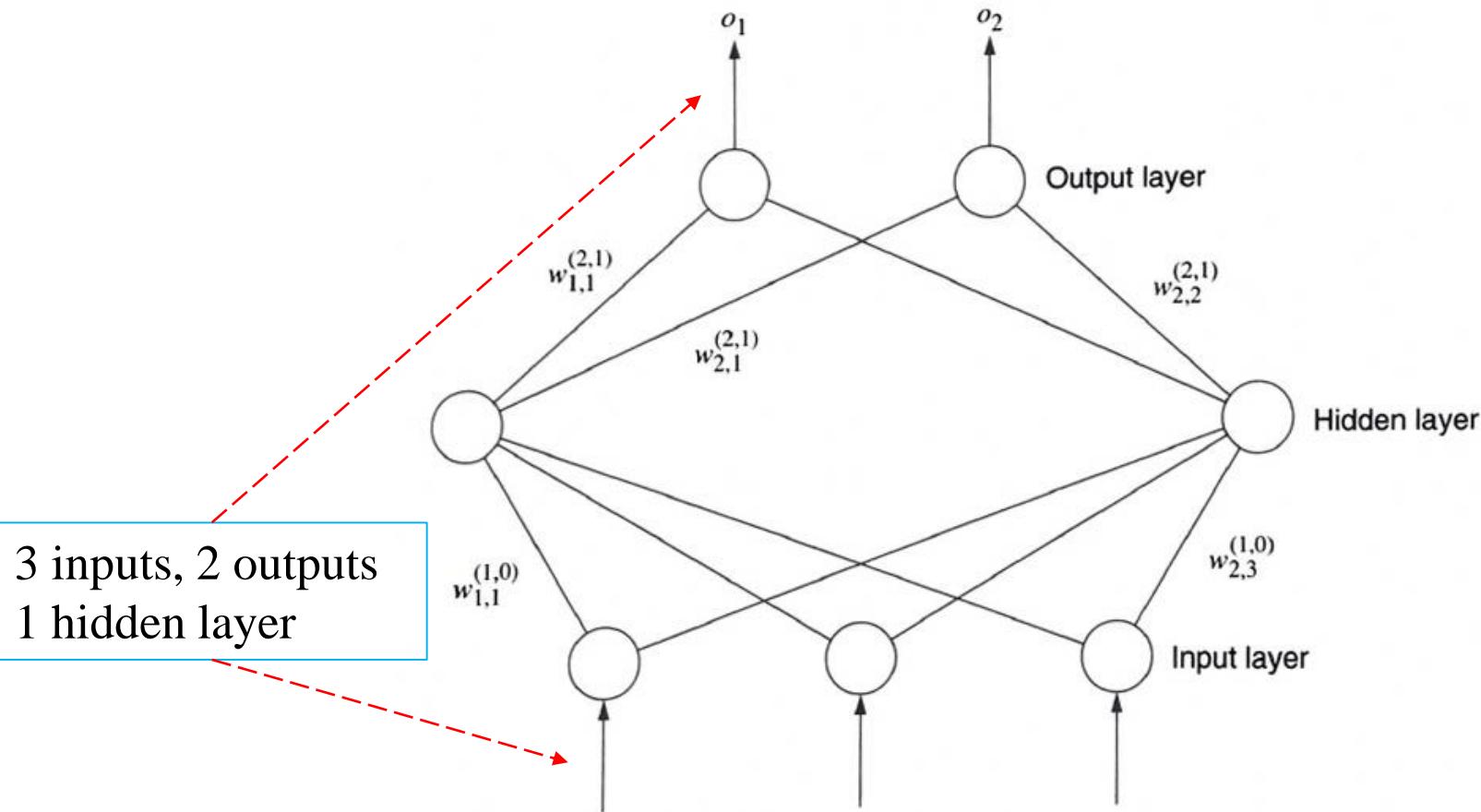
- ▶ The gradient of these backward-propagated error measures can then be used to determine the desired weight modifications for connections.
- ▶ The backpropagation algorithm has had a major impact on the field of neural networks.
- ▶ The backprop has been widely applied to a large number of problems in many disciplines.
- ▶ Backpropagation has been used for several kinds of applications including classification, function approximation, forecasting, ...

Content

- ▶ Multilayer networks
- ▶ Multilevel discrimination
- ▶ Architecture
- ▶ Objectives

Multilevel discrimination

- ▶ A layered structure of nodes can be used to solve linearly nonseparable classification problems.
- ▶ MLPs may have more than one hidden layer.
- ▶ The MLP contains hidden nodes in a hidden layer.

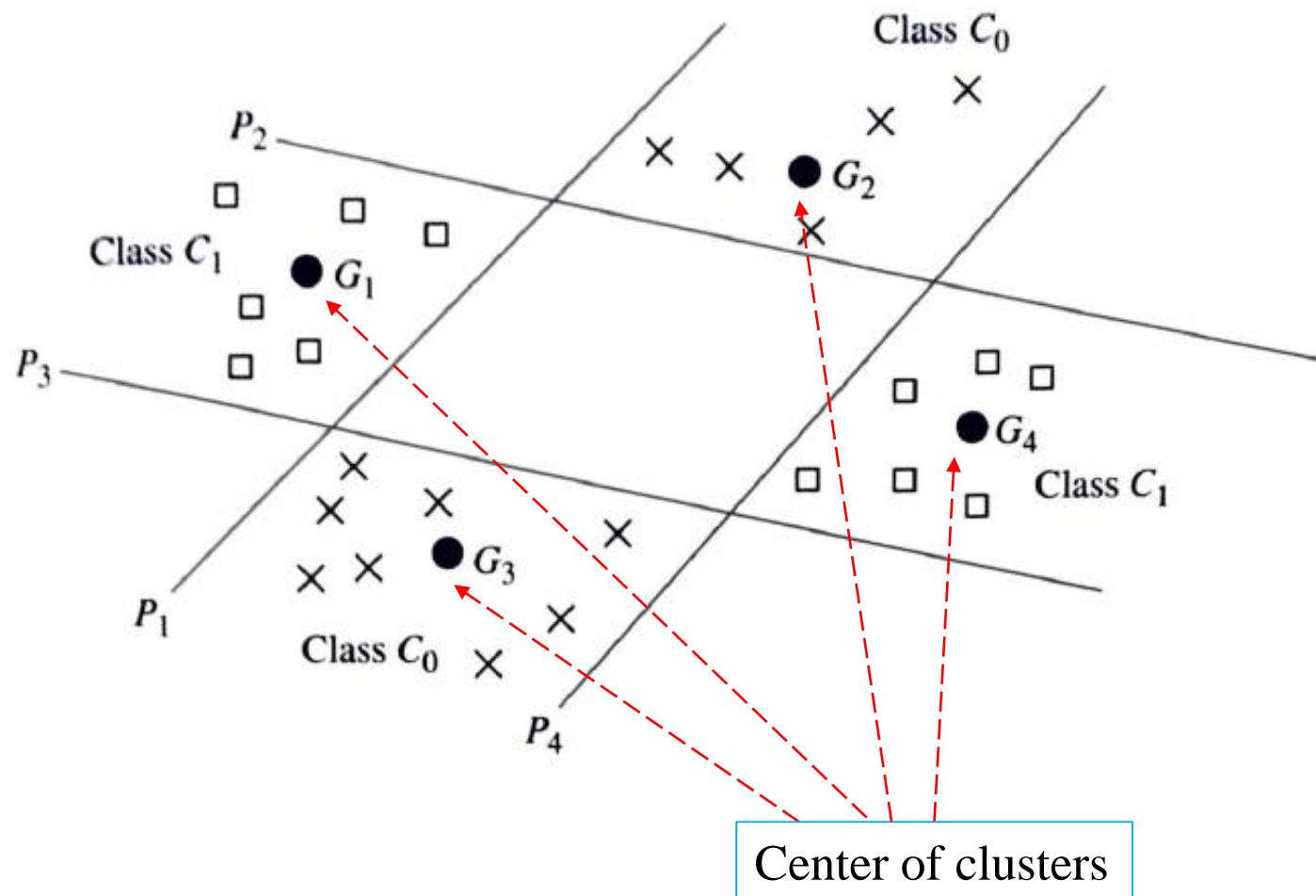


Multilevel discrimination

- ▶ It is not easy to train such a network since the ideal weight change rule is more complex than the single layer nets.
- ▶ The network calculates an error value for some input sample.
- ▶ Which weights in the network must be modified?
- ▶ Are there any differences between changes depending on connections?
- ▶ What are the change of the weight values for each connection?
- ▶ How can we decide the value of changing for each connections?

Multilevel discrimination

- Two-class problem, which cannot be separated by a straight line, can be separated using multiple straight lines.



Content

- ▶ Multilayer networks
- ▶ Multilevel discrimination
- ▶ **Architecture**
- ▶ Objectives

Architecture

- ▶ The backpropagation algorithm assumes a feedforward neural network architecture.
- ▶ In this architecture, nodes are partitioned into layers numbered 0 to L .
- ▶ The lowermost layer is the input layer numbered as layer 0, and the topmost layer is the output layer numbered as layer L .
- ▶ Backpropagation addresses networks which $L > 2$.
- ▶ The hidden layers are numbered 1 to $L - 1$.

Architecture

- ▶ Hidden nodes do not directly receive inputs or send outputs to the external environment.
- ▶ The presentation of the algorithm also assumes that the network is strictly feedforward, only nodes in adjacent layers are directly connected.
- ▶ Input layer nodes transmit input values to the hidden layer nodes and do not perform any computation.
- ▶ The number of input nodes equals the dimensionality of input patterns.
- ▶ The number of nodes in the output layer is dictated by the problem.

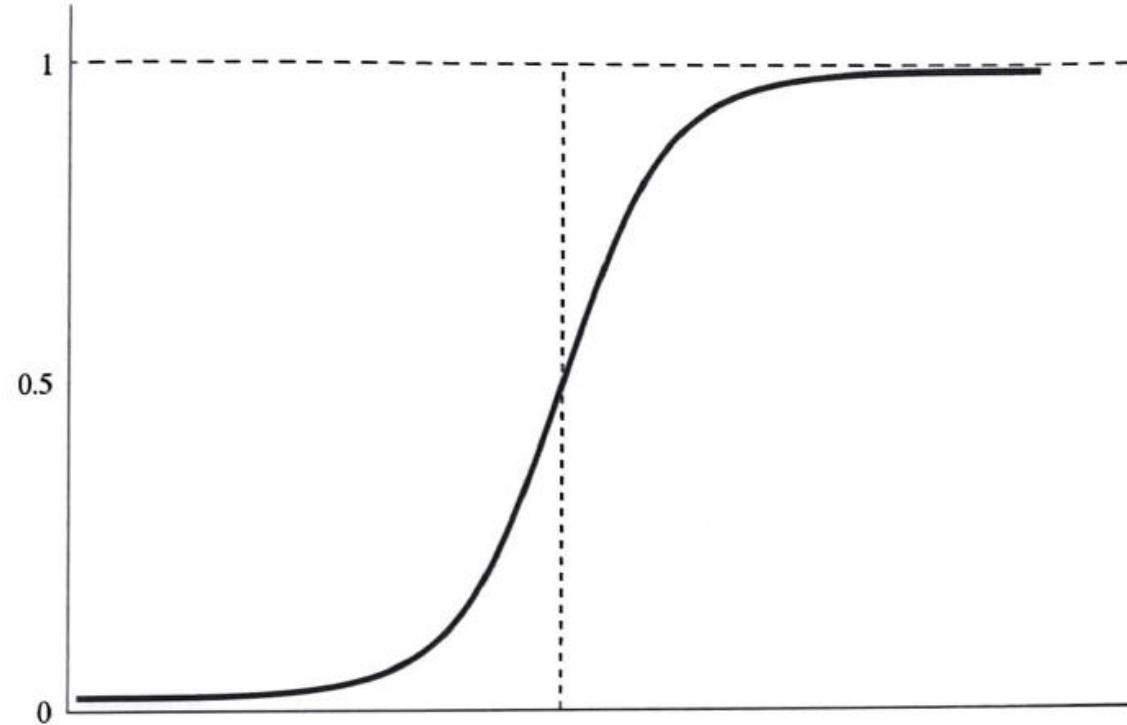
Architecture

- ▶ If the task is to approximate a function mapping n -dimensional input vectors to m -dimensional output vectors, the network contains n input nodes and m output nodes.
- ▶ An additional "dummy" input node with constant input ($= 1$) is also often used with a weight value.
- ▶ The number of nodes in the hidden layer is up to generally depends on problem complexity.
- ▶ Each hidden node and output node applies a sigmoid function to its net input.

Architecture

- ▶ The main reasons the use of the sigmoidal function are: continuous, monotonically increasing, invertible, everywhere differentiable, and asymptotically approaches its saturation values as $net \rightarrow \pm\infty$.

$$S(net) = \frac{1}{1 + e^{(-net)}}$$



Content

- ▶ Multilayer networks
- ▶ Multilevel discrimination
- ▶ Architecture
- ▶ **Objectives**

Objectives

- ▶ The algorithm is a supervised learning algorithm trained using P input patterns.
- ▶ For each input vector x_p , we have the corresponding desired K-dimensional output vector;

$$\mathbf{d}_p = (d_{p,1}, d_{p,2}, \dots, d_{p,K}) \quad 1 \leq p \leq P$$

- ▶ Collection of input-output pairs constitutes the training set;

$$\{(x_p, d_p) : p = 1, \dots, P\}$$

- ▶ The length of the input vector x_p is equal to the number of inputs of the application.
- ▶ The length of the output vector d_p is equal to the number of outputs of the application.

Objectives

- ▶ The training algorithm should work irrespective of the initial weight values.
- ▶ The goal of training is to modify the weights.
- ▶ The network's output vector \mathbf{o}_p should be as close as possible to the desired output \mathbf{d}_p .

$$\mathbf{o}_p = (o_{p,1}, o_{p,2}, \dots, o_{p,K})$$

- ▶ To achieve this goal, the cumulative error of the network should be minimized.

$$\text{Error} = \sum_{p=1}^P Err(\mathbf{o}_p, \mathbf{d}_p)$$

- ▶ There are many possible choices for the error function.

Objectives

- ▶ The error function may be cross-entropy function.

$$Err(\mathbf{o}_p, \mathbf{d}_p) = \sum_p (\mathbf{d}_p \log \mathbf{o}_p + (1 - \mathbf{d}_p) \log(1 - \mathbf{o}_p))$$

- ▶ The goal of this lecture will be to find weights that minimize Sum Square Error (SSE) or Mean Squared Error (MSE).

$$\text{Sum Square Error} = \sum_{p=1}^P \sum_{j=1}^K (\ell_{p,j})^2$$

$$MSE = \frac{1}{P} \sum_{p=1}^P \sum_{j=1}^K (\ell_{p,j})^2$$

$$\ell_{p,j} = |o_{p,j} - d_{p,j}|$$