Perceptron Networks and Applications

M. Ali Akcayol
Gazi University
Department of Computer Engineering

Content

Training

Backpropagation algorithm
Initialization of the weights
Frequency of weight updates
Choice of learning rate
Generalizability

Number of hidden layers and nodes
Number of samples

Training
By learning rule we mean a procedure (training algorithm) for
modifying the weights and biases of a network.
The purpose of the learning rule is to train the network to
perform some task.
There are many types of neural network learning rules.
They fall into three broad categories:
Supervised learning
Unsupervised learning
Reinforcement learning

Training

Supervised learning

In supervised learning, the learning rule is provided with a set
of examples (the training set) of proper network behavior:

(Pt} s APt} s oot s {pQ‘tQ}

where, p, is an input to the network and t; is the
corresponding correct (target) output.

As the inputs are applied to the network, the network outputs
are compared to the targets.

The learning rule is then used to adjust the weights and biases
of the network in order to move the network outputs closer to
the targets.

The perceptron learning rule falls in this supervised learning
category.

Training

Unsupervised learning

In unsupervised learning, the weights and biases are modified
in response to network inputs only.

There are no target outputs available.
At first glance this might seem to be impractical.

How can you train a network if you don’t know what it is
supposed to do?

Most of these algorithms perform some kind of clustering
operation.

They learn to categorize the input patterns into a finite
number of classes.

This is especially useful in such applications as vector
guantization.

Training

Reinforcement learning
Reinforcement learning is similar to supervised learning.
There are no target values.

Instead of being provided with the correct output for each
network input, the algorithm is only given a grade.

The grade (or score) is a measure of the network performance
over some sequence of inputs.

This type of learning is currently much less common than
supervised learning.

Genetic algorithms, tabu search, simulated annealing
algorithms are in the reinforcement learning category.

Content

Training

Backpropagation algorithm
Initialization of the weights
Frequency of weight updates
Choice of learning rate
Generalizability

Number of hidden layers and nodes
Number of samples

Backpropagation algorithm

The backpopagation algorithm is a generalization of LMS
algorithm.

The backpropagation algorithm modifies the weights to
minimize SSE or MSE.

Backprop uses supervised learning in which the inputs and the
corresponding outputs are used for training.

Once the network is trained, the weights are frozen and the
network can be used to compute output values for new input
samples.

The feedforward process involves presenting an input pattern
to input layer neurons that pass the input values onto the first
hidden layer.

Each of the hidden layer nodes computes a weighted sum of
its inputs, passes the sum through its activation function and
presents the result to the output layer.

Backpropagation algorithm

Feedforward

The 1th input node holds a value
Xy, i for the pth pattern.

The net input for jth node

in the hidden layer is (includes
threshold x; , = 1),

D) o (1,0)

nei, = 2 i—oW ji xpd

The connection from Ith input node to jth hidden layer node,
(1.0) where (1, 0) represents layer 1 (hidden layer),

w layer O (input layer).

I

The output of the jth hidden layer node is

[[] . Q N (1,0) ‘
Xy j =0 (L =0 Wi Apu where S is a sigmoid function.

Backpropagation algorithm

Feedforward

The net input to the kth output
layer node is,

(2) 2,1) (1)
ner; zz (tﬁ; 1.”-}

The connection from jth input

node to kth output layer node,

2 1) where (2, 1) represents
Wy J layer 2 (output layer),
layer 1 (hidden layer).

The output of the kth output layer node is,

— (2,1) (U where S is a sigmoid function.
Op.k —S(Z WX,) 9

Hidden layer

The corresponding squared error is,
t;‘l — it!;lht - “P'kl-

10

Backpropagation algorithm

Backpropagation
For each connection from

the hidden layer to output layer,
we calculate

aE/au-‘- Y

For each connection from
the input layer to hidden layer,
we calculate

OE/dw|;"

The following two equations describe the weight changes

2.1) —dE 1.0) —¢
Au',“.l' =(A!.l‘..:) = dk
k.. u (2,1) 3 (1.0)
Wy J uj.i

11

Backpropagation algorithm

Backpropagation

The chain rule is used to calculate

the weight changes Aw;"" ~~__

o0E 0E 0dog 8net()

(2, 1) (2) (2 1)
ow Wy 3f0k Bnetk Bwk ¥

Since E = /Z (dy — o;;}z AN o

\ ~
N

~L 9B ,
EE = —-Z(dk — 0k) m\"‘ —2(dy — ox)8' (net;))x“)
00y

\

Since o = S(Hf-’fk)) , aokfﬂnefk — S’({E)

21 l
Since net” =Y éj P g x;) aneth)/aw(z D _ }1)
J

12

Backpropagation algorithm

Backpropagation

The chain rule is used to calculate
the welght changes Aw' "'~

\
\ (1)

IE 0E 0doy anet(z) 3x(l) 3n\et}
3 (1,0)_2
W) ;

/ R
Ok ‘. c/f ff // ‘|
aok — 2k = Gk/ / \
/ \
doy/dnet> = 5 /(4: et®) \
/ |

ane (2) w(2 1) 9 ;1) S\; W

(1) k.j = (ner-)
d j dnet'V J

% @ L. M o 1,0 *
k=1 %0k dnet,™ 9dx;" dnet;’ dw;;" o

E__ o 8 (ner?
a0 = Z [— (dx — ok) (netk
awj’i k=1

)

(2,1
wkj

g’ (net(l))]

13

Backpropagation algorithm

Backpropagation algorithm

Algorithm Backpropagation;
Start with randomly chosen weights;
while MSE is unsatisfactory
and computational bounds are not exceeded, do
for each input pattern x,, 1<p <P,

Compute hidden node inputs (net),))

Compute hidden node outputs (xl(, i)

Compute inputs to the output nodes (net,

Compute the network outputs (0pk);
Compute the error between o0, and desired output dp;;

Modify the weights between hidden and output nodes:

2,1 2 1
Aw() = =n(dpx — 0p, k)S’(net())xf) z

Modlfy the weights between input and hidden nodes:
Aw (l - =0 Z ((dp k—O0pk)S (net(z))w(2 1)) 8’(net(1))xp i

end-for
end-while.

())

14

Content

Training

Backpropagation algorithm
Initialization of the weights
Frequency of weight updates
Choice of learning rate
Generalizability

Number of hidden layers and nodes
Number of samples

15

Initialization of the weights
Training is generally started with randomly chosen initial
weight values.

Typically, the weights chosen are small (between -1.0 and 1.0,
-0.5 to +0.5).

Larger weight values may drive the output nodes to
saturation.

Initialization may bias the network to give much greater
importance to inputs those with higher value.

In this case, the weights in the hidden layers can be taken the
same.

16

Initialization of the weights

The following equation can be used to initialize the weights
between input layer and first hidden layer.

o]

(l 0)
:]:_ g
i 2P 4t |xl

The following equation can be used to initialize the weights
between hidden layers and output layer.

17

Content

Training

Backpropagation algorithm
Initialization of the weights
Frequency of weight updates
Choice of learning rate
Generalizability

Number of hidden layers and nodes
Number of samples

18

Frequency of weight updates

There are two approaches to learning;

In "per-pattern” learning: weights are changed after
every sample presentation.

In "per-epoch" (or "batch-mode") learning: weights are
updated only after all samples are presented to the
network.

An epoch consists of such a presentation of the entire set
of training samples.

Calculated weight changes for each sample are

accumulated together into a single change to occur at the
end of each epoch.

P
Aw = Z Awp
p=lI

19

Frequency of weight updates

In each case, training is continued until a reasonably low
error is achieved, or until the maximum number of
iterations allocated for training is exceeded.

For some applications, the input-output patterns are

oresented on-line, hence batch-mode learning is not
nossible.

Per-pattern training is more expensive then per-epoch
training.

For large applications, the amount of training time is

large, requiring several days even on the fastest
processors.

20

Frequency of weight updates
The amount of training time can be reduced by exploiting
parallelism in per-epoch training.
Per-pattern training is not parallelizable in this manner.

One problem in per-pattern learning is that the network
may just learn to generate an output close to the desired
output for the current pattern, without actually learning
anything about the entire training set.

21

Content

Training

Backpropagation algorithm
Initialization of the weights
Frequency of weight updates
Choice of learning rate
Generalizability

Number of hidden layers and nodes
Number of samples

22

Choice of learning rate

Weight vector changes in backpropagation are
proportional to the negative gradient of the error.

The relative changes that must occur in different weights
when a training sample is presented.

The exact magnitudes of the desired weight changes are
not able to be decided.

The magnitude change depends on the appropriate
choice of the learning rate 7.

A large value of 1 will lead to rapid learning but the
weight may then oscillate.

Low values imply slow learning.
This is typical of all gradient descent methods.

23

Choice of learning rate

The right value of /7 will depend on the application.

Values between 0.1 and 0.9 have been used in many
applications.

There have been several studies in the literature on the
choice of 1.

In some formulations, each weight in the network is
associated with its own learning rate.

These weights are adapted separately from other
weights.

Each connection has its own learning rates.

24

Choice of learning rate

A simple heuristic is to begin with a large value for nin
the early iterations, and steadily decrease it.

The changes of the weight vector must be small to
reduce the likelihood of divergence or weight oscillations.

This is based on the expectation that larger changes in
error would occur earlier in the training.

In this case, the error decreases more slowly in the later
stages.

Another heuristic is to increase 77 at every iteration that
improves performance by some significant amount.

Decrease 77 at every iteration that worsens performance
by some significant amount.

25

Choice of learning rate

The second derivative of the error measure provides
information regarding the rate with which the first
derivative changes.

If the second derivative is low in magnitude, it is safe to
assume a steady slope, and large steps can be taken.

If the second derivative has high magnitude for a given
choice of w, the first derivative may be changing
significantly at w.

Assumptions of steady slope are then incorrect, and a
smaller choice of /7 may be appropriate.

The main difficulty with this method is that a large
amount of computation is required.

26

Content

Training

Backpropagation algorithm
Initialization of the weights
Frequency of weight updates
Choice of learning rate
Generalizability

Number of hidden layers and nodes
Number of samples

27

Generalizability

For a large network, it is possible that repeated training
iterations successively improve performance of the
network on training data.

But the resulting network may perform poorly on test
data.

This phenomenon is called overtraining.

One solution is to constantly monitor the performance of
the network on the test data.

The weights should be adjusted only on the basis of the
training set, but the error should be monitored on the

test set.

28

Generalizability

Training continues as long as the error on the test set
continues to decrease.

Training process is terminated if the error on the test set
Increases.

Training may thus be terminated even if the network
performance on the training set continues to improve.

Error
'

Error on test data

Error on training data

>

Instant when error on Training time
test data begins to worsen 29

Generalizability

To eliminate random fluctuations, performance over the
test set is monitored over several iterations.

This method does not suggest using the test data for
training: weight changes are computed solely on the
basis of the network's performance on training data.

With this stopping criterion, final weights do depend on
the test data in an indirect manner.

Since the weights are not obtained from the current test
data, it is expected that the network will continue to
perform well on future test data.

30

Generalizability

A network with a large number of nodes is capable of
memorizing the training set but may not generalize well.

For this reason, networks of smaller sizes are preferred
over larger networks.

Thus, overtraining can be avoided by using networks with
a small number of parameters.

Injecting noise into the training set has been found to be
a useful technique.

This is especially the case when the size of the training
set is small.

randomly generated displacement.

31

Content

Training

Backpropagation algorithm
Initialization of the weights
Frequency of weight updates
Choice of learning rate
Generalizability

Number of hidden layers and nodes
Number of samples

32

Number of hidden layers and nodes

Determining how many training samples are required for
successful learning solved by trial and error.

And, how large a neural network is required for a specific task
is solved in practice by trial and error also.

These problems are strictly dependent on the problem.

With too few nodes, the network may not be powerful enough
for a given learning task.

With a large number of nodes, computation is too expensive.
The network tends to perform poorly on new test samples,

The network is not considered to have accomplished learning
successfully.

Neural learning is considered successful only if the system can
perform well on test data.

Capabilities of a neural network are emphasized to generalize
from input training samples.

33

Number of hidden layers and nodes

Adaptive algorithms have been devised to obtain
optimized number of neurons.

Begin from a
nodes and lin
an unaccepta

arge network and repeatedly remove some
ks until network performance degrades to

vle level.

New nodes and weights can also be added, starting from
a very small network and until the performance is

satisfactory.

The network is retrained at each intermediate state.

34

Number of hidden layers and nodes

For classification tasks with @ input nodes, first hidden
layer nodes often function as hyperplanes.

That hyperplanes effectively partition d-dimensional
space into various regions.

Each node in the next layer represents a cluster of points
that belong to the same class.

All members in a set are assumed to belong to the same
class, and instances of different classes are assigned to
different sets.

35

Number of hidden layers and nodes

Network with a single node using step function.

|

()

Soax 4 by o<) & e
F b

F 4
/ \ y |
p

avt by vex

One hidden layer network with convex region.
Each node realizes one of the lines bounding the region.

1.2

Convex
Region

\ 13

L4 36

Number of hidden layers and nodes

Network with two hidden layers that realizes the union of
three convex regions.

Each box represents one hidden layer network.

N ‘\\
\% //' \ e
| = ~
d . . __T N

P | [P2 P3 |

37

Content

Training

Backpropagation algorithm
Initialization of the weights
Frequency of weight updates
Choice of learning rate
Generalizability

Number of hidden layers and nodes
Number of samples

38

Number of samples

How many samples are needed for good training?

At least five to ten times as many training samples as the
number of weights to be trained.

The equation is suggested on the basis of the desired
accuracy on the test set:

|W
(1 —a)
P denotes the number of patterns,
|W| denotes the number of weights to be trained,

a denotes the expected accuracy on the test set.

P >

39

Number of samples

Let a network contains 27 weights and the desired test
set accuracy is 95% (a = 0.95).

The analysis suggests that the size of the training set
should be at least P > 27/0.05 = 540.
The above is a necessary condition.
A sufficient condition that ensures the desired
performance is:

W n

P> lo
~l-a) 2l1-a

where N is the number of nodes.

40

